for(t=0;t<CT_MAX_TOUCH;t++)//×î¶à5µã´¥Ãþ { if((tp_dev.sta)&(1<<t))//ÅжÏÊÇ·ñÓе㴥Ãþ£¿ { if(tp_dev.x[t]<lcddev.width&&tp_dev.y[t]<lcddev.height)//ÔÚLCD·¶Î§ÄÚ { if(lastpos[t][0]==0XFFFF) { lastpos[t][0] = tp_dev.x[t]; lastpos[t][1] = tp_dev.y[t]; } lcd_draw_bline(lastpos[t][0],lastpos[t][1],tp_dev.x[t],tp_dev.y[t],2,POINT_COLOR_TBL[t]);//»­Ïß lastpos[t][0]=tp_dev.x[t]; lastpos[t][1]=tp_dev.y[t]; if(tp_dev.x[t]>(lcddev.width-24)&&tp_dev.y[t]<16) { Load_Drow_Dialog();//Çå³ý } } }else lastpos[t][0]=0XFFFF;

时间: 2023-12-13 13:04:18 浏览: 32
这段代码是在循环中检测电容触摸屏是否有触摸事件发生,并在LCD屏幕上绘制触摸线。代码首先使用一个for循环遍历最多5个触摸点,如果检测到有触摸事件发生,会使用lcd_draw_bline函数在LCD屏幕上绘制触摸线。触摸线的颜色使用了POINT_COLOR_TBL数组来选择,数组中存放了5种颜色供选择。同时,代码会更新lastpos数组中保存的上一次触摸点的坐标,并判断触摸点位置是否在右上角一个矩形区域内。如果在该区域内,则会执行Load_Drow_Dialog函数来清除LCD屏幕并显示一个对话框。 在代码中,使用了TP_MAX_TOUCH来限定触摸点的数量,使用了TP_PRES_DOWN来检测触摸屏是否有触摸事件发生。使用了POINT_COLOR_TBL数组来选择触摸线的颜色。使用了lcd_draw_bline函数来在LCD屏幕上绘制触摸线。同时,使用了lastpos数组来保存上一次触摸点的坐标,用于绘制触摸线。
相关问题

uchar Ds1302Read(uchar addr) { uchar n,dat,dat1; RST = 0; _nop_(); SCLK = 0;//ÏȽ«SCLKÖõ͵çƽ¡£ _nop_(); RST = 1;//È»ºó½«RST(CE)Öøߵçƽ¡£ _nop_(); for(n=0; n<8; n++)//¿ªÊ¼´«ËÍ°ËλµØÖ·ÃüÁî { DSIO = addr & 0x01;//Êý¾Ý´ÓµÍλ¿ªÊ¼´«ËÍ addr >>= 1; SCLK = 1;//Êý¾ÝÔÚÉÏÉýÑØʱ£¬DS1302¶ÁÈ¡Êý¾Ý _nop_(); SCLK = 0;//DS1302ϽµÑØʱ£¬·ÅÖÃÊý¾Ý _nop_(); } _nop_(); for(n=0; n<8; n++)//¶ÁÈ¡8λÊý¾Ý { dat1 = DSIO;//´Ó×îµÍλ¿ªÊ¼½ÓÊÕ dat = (dat>>1) | (dat1<<7); SCLK = 1; _nop_(); SCLK = 0;//DS1302ϽµÑØʱ£¬·ÅÖÃÊý¾Ý _nop_(); } RST = 0; _nop_(); //ÒÔÏÂΪDS1302¸´Î»µÄÎȶ¨Ê±¼ä,±ØÐëµÄ¡£ SCLK = 1; _nop_(); DSIO = 0; _nop_(); DSIO = 1; _nop_(); return dat; }

这是一个读取DS1302时钟芯片的函数,函数的参数是要读取的寄存器地址。函数的具体实现过程是:首先将RST(CE)管脚拉低,然后将SCLK管脚拉低,等待一段时间后将RST(CE)管脚拉高,开始发送读取寄存器地址的命令。接着通过循环将读取地址的命令发送到DSIO管脚上,每次发送完毕之后将SCLK管脚拉高,等待一段时间后再将SCLK管脚拉低。发送完地址后,再通过循环将要读取的数据从DSIO管脚上读取出来,每次读取一个bit,将其存储到dat变量中,直到读取完8个bit。读取完数据之后,将RST(CE)管脚拉低,等待一段时间后将SCLK管脚拉高,再将DSIO管脚设置为输出模式,先输出0,再输出1,最后返回读取到的数据。

for(i=0;i<5;i++) //ÇóÖмäÈýÏîµÄºÍ { adsum[QAD[i]] = ad_valu[QAD[i]][1] + ad_valu[QAD[i]][2] + ad_valu[QAD[i]][3]; ad_valu1[QAD[i]] = adsum[QAD[i]] / 3; } for(i = 0;i < 4;i ++) { AD_V[0][i] = AD_V[0][i + 1]; AD_V[1][i] = AD_V[1][i + 1]; AD_V[4][i] = AD_V[4][i + 1]; AD_V[5][i] = AD_V[5][i + 1]; AD_V[6][i] = AD_V[6][i + 1]; } for(i=0;i<5;i++) { AD_V[QAD[i]][4] = ad_valu1[QAD[i]]; } for(i = 0;i < 5;i ++) { AD_sum[0] += AD_V[0][i]; AD_sum[1] += AD_V[1][i]; AD_sum[4] += AD_V[4][i]; AD_sum[5] += AD_V[5][i]; AD_sum[6] += AD_V[6][i]; } for(i=0;i<5;i++) { AD_L[QAD[i]] = AD_sum[QAD[i]] / 5; AD_sum[QAD[i]] = 0; }对这段代码进行优化

根据您提供的代码,我看到了一些可以进行优化的地方。下面是对您的代码进行优化的建议: 1. 减少冗余的循环次数:在第一个循环中,您可以将循环条件改为 `i < 4`,因为在每次循环中,您只使用了 `ad_valu` 数组中的索引 1、2 和 3 的元素。同样,在第二个和第四个循环中,可以将循环条件改为 `i < 4`。 ```c++ for(i = 0; i < 4; i++) { adsum[QAD[i]] = ad_valu[QAD[i]][1] + ad_valu[QAD[i]][2] + ad_valu[QAD[i]][3]; ad_valu1[QAD[i]] = adsum[QAD[i]] / 3; AD_V[0][i] = AD_V[0][i + 1]; AD_V[1][i] = AD_V[1][i + 1]; AD_V[4][i] = AD_V[4][i + 1]; AD_V[5][i] = AD_V[5][i + 1]; AD_V[6][i] = AD_V[6][i + 1]; AD_sum[0] += AD_V[0][i]; AD_sum[1] += AD_V[1][i]; AD_sum[4] += AD_V[4][i]; AD_sum[5] += AD_V[5][i]; AD_sum[6] += AD_V[6][i]; } ``` 2. 减少不必要的变量:在第一个循环中,您可以直接使用 `ad_valu[QAD[i]][k]` 进行比较和交换,而不需要将其赋值给临时变量 `temp`。 ```c++ for(i = 0; i < 4; i++) { for(j = 0; j < 4 - i; j++) { if(ad_valu[QAD[i]][j] > ad_valu[QAD[i]][j + 1]) { int temp = ad_valu[QAD[i]][j + 1]; ad_valu[QAD[i]][j + 1] = ad_valu[QAD[i]][j]; ad_valu[QAD[i]][j] = temp; } } } ``` 3. 使用平均值计算替代循环:在最后一个循环中,您可以使用一个循环来计算 `AD_sum` 数组中的元素和,并在循环结束后计算平均值。 ```c++ int sum = 0; for(i = 0; i < 5; i++) { sum += AD_V[0][i]; sum += AD_V[1][i]; sum += AD_V[4][i]; sum += AD_V[5][i]; sum += AD_V[6][i]; AD_L[QAD[i]] = sum / 5; sum = 0; } ``` 请确保在进行优化之前备份您的代码,并进行适当的测试以确保优化后的代码仍然正确运行。

相关推荐

解释这段代码 void SYN_FrameInfo(unsigned char Music, unsigned char *HZdata) { /****************ÐèÒª·¢Ë͵ÄÎı¾**********************************/ unsigned char HZ_Length; unsigned char ecc = 0; //¶¨ÒåУÑé×Ö½Ú unsigned int i = 0; HZ_Length = strlen((char*)HZdata); //ÐèÒª·¢ËÍÎı¾µÄ³¤¶È /*****************Ö¡¹Ì¶¨ÅäÖÃÐÅÏ¢**************************************/ Frame_Info[0] = 0xFD ; //¹¹ÔìÖ¡Í·FD Frame_Info[1] = 0x00 ; //¹¹ÔìÊý¾ÝÇø³¤¶ÈµÄ¸ß×Ö½Ú Frame_Info[2] = HZ_Length + 3; //¹¹ÔìÊý¾ÝÇø³¤¶ÈµÄµÍ×Ö½Ú Frame_Info[3] = 0x01 ; //¹¹ÔìÃüÁî×Ö£ººÏ³É²¥·ÅÃüÁî Frame_Info[4] = 0x01 | Music << 4 ; //¹¹ÔìÃüÁî²ÎÊý£º±³¾°ÒôÀÖÉ趨 /*******************УÑéÂë¼ÆËã***************************************/ for(i = 0; i < 5; i++) //ÒÀ´Î·¢Ë͹¹ÔìºÃµÄ5¸öÖ¡Í·×Ö½Ú { ecc = ecc ^ (Frame_Info[i]); //¶Ô·¢Ë͵Ä×Ö½Ú½øÐÐÒì»òУÑé } for(i = 0; i < HZ_Length; i++) //ÒÀ´Î·¢ËÍ´ýºÏ³ÉµÄÎı¾Êý¾Ý { ecc = ecc ^ (HZdata[i]); //¶Ô·¢Ë͵Ä×Ö½Ú½øÐÐÒì»òУÑé } /*******************·¢ËÍÖ¡ÐÅÏ¢***************************************/ memcpy(&Frame_Info[5], HZdata, HZ_Length); Frame_Info[5 + HZ_Length] = ecc; UART1_SendString(Frame_Info, 5 + HZ_Length + 1); } void delay(unsigned int uldata) { unsigned int j = 0; unsigned int g = 0; for (j = 0; j < uldata; j++) for (g = 0; g < 110; g++); }

解释一下这段代码过程void CMP_ISR(void) interrupt 21 { u8 i; CMPCR1 &= ~0x40; // ÐèÈí¼þÇå³ýÖжϱê־λ if(XiaoCiCnt == 0) //Ïû´Åºó²Å¼ì²â¹ý0ʼþ, XiaoCiCnt=1:ÐèÒªÏû´Å, =2:ÕýÔÚÏû´Å, =0ÒѾ­Ïû´Å { T4T3M &= ~(1<<3); // Timer3Í£Ö¹ÔËÐÐ P27 = 0; if(B_Timer3_OverFlow) //Çл»Ê±¼ä¼ä¸ô(Timer3)ÓÐÒç³ö { B_Timer3_OverFlow = 0; PhaseTime = 8000; //»»Ïàʱ¼ä×î´ó8ms, 2212µç»ú12V¿Õת×î¸ßËÙ130usÇл»Ò»Ïà(200RPS 12000RPM), 480mA } else { i=T3H; PhaseTime = (((u16)i << 8) + T3L) >> 1; //µ¥Î»Îª1us if(PhaseTime >= 8000) PhaseTime = 8000; //»»Ïàʱ¼ä×î´ó8ms, 2212µç»ú12V¿Õת×î¸ßËÙ130usÇл»Ò»Ïà(200RPS 12000RPM), 480mA } T3H = 0; T3L = 0; T4T3M |= (1<<3); //Timer3¿ªÊ¼ÔËÐÐ PhaseTimeTmp[TimeIndex] = PhaseTime; //±£´æÒ»´Î»»Ïàʱ¼ä if(++TimeIndex >= 16) TimeIndex = 0; //ÀÛ¼Ó8´Î for(PhaseTime=0, i=0; i<16; i++) PhaseTime += PhaseTimeTmp[i]; //Çó16´Î»»Ïàʱ¼äÀÛ¼ÓºÍ PhaseTime = PhaseTime >> 5; //Çó16´Î»»Ïàʱ¼äµÄƽ¾ùÖµµÄÒ»°ë, ¼´30¶Èµç½Ç¶È if((PhaseTime >= 40) && (PhaseTime <= 1000)) TimeOut = 150; //¶Âת600ms³¬Ê± if( PhaseTime >= 60) PhaseTime -= 40; //ÐÞÕýÓÉÓÚÂ˲¨µçÈÝÒýÆðµÄÖͺóʱ¼ä else PhaseTime = 20; // PhaseTime = 20; //Ö»¸ø20us, ÔòÎÞÖͺóÐÞÕý, ÓÃÓÚ¼ì²âÂ˲¨µçÈÝÒýÆðµÄÖͺóʱ¼ä T4T3M &= ~(1<<7); //Timer4Í£Ö¹ÔËÐÐ PhaseTime = PhaseTime << 1; //2¸ö¼ÆÊý1us PhaseTime = 0 - PhaseTime; T4H = (u8)(PhaseTime >> 8); //×°ÔØ30¶È½ÇÑÓʱ T4L = (u8)PhaseTime; T4T3M |= (1<<7); //Timer4¿ªÊ¼ÔËÐÐ XiaoCiCnt = 1; //1:ÐèÒªÏû´Å, 2:ÕýÔÚÏû´Å, 0ÒѾ­Ïû´Å P27 = 1; } }

#include <REGX51.H> sbit Trig=P2^0; sbit Echo=P2^1; sbit motor=P1^1; //¿ØÖÆ´óË®·§ sbit motor1=P1^2; //¿ØÖÆСˮ·§ sbit buzzer=P1^3; //±¨¾¯ÏµÍ³ int a=20,b=60,c=80,d=100;//aΪµÍˮλ bΪÖÐˮλ cΪ¸ßˮλ dΪˮÏä×î´ó¸ß¶È void delay(int t) // ÑÓʱº¯Êý { int i, j; for (i = t; i > 0; i--) for (j = 110; j > 0; j--); } void Delay10us() //@12.000MHz { unsigned char i; i = 27; while (--i); } unsigned char get_dis(void) //²âÁ¿¾àÀë { int distance=0,time=0; //¾àÀëºÍʱ¼ä Trig=0; //ÏÈΪTrig¸³µÍµçƽ£¬·½±ãµÈÏÂʹµÃ³¬Éù²¨¹¤×÷ Trig=1; //¸øÓè¸ßµçƽ Delay10us(); //±£³Ö10us¸ßµçƽ£¬¸ø³¬Éù²¨Ä£¿éʱ¼ä while(!Echo); //Echo±ä³É¸ßµçƽ£¬ÓÐÐźŷ¢ËÍ TR0=1; //¿ªÆô¶¨Ê±Æ÷0 while(Echo); //µÈ´ýEcho±ä³ÉµÍµçƽ£¬ÓÐÐźŽÓÊ Trig=0; //¹Ø±ÕTrig£¬Ê¹µÃ³¬Éù²¨Ä£¿é¹¤×÷ TR0 = 0; //¹Ø±Õ¶¨Ê±Æ÷0 time = TH0 * 256 + TL0; //¼ÆËãÐźŴ«²¥Ê±¼ä distance = time * 0.017; TH0 = 0; TL0 = 0; return distance;//¶¨Ê±³õÖµÇåÁã } int xuanze()//¸ù¾ÝË®Ãæ¸ß¶Èµ÷ÕûË®·§ { unsigned int distance = get_dis(); if(distance<a) {motor=1; motor1=1;} else if(distance>=a&&distance<b) {motor=1; motor1=0;} else if(distance>=b&&distance<c) {motor=0; motor1=1;} else {motor=0; motor1=0;buzzer=1;} } void ex0_time()interrupt 0 { xuanze(); } void main() { TMOD = 0x01; // ÉèÖö¨Ê±Æ÷0Ϊ¹¤×÷ģʽ1 TH0 = 0; TL0 = 0; //¶¨Ê±³õÖµÇåÁã EX0=EA=1; IT0=0; motor=0; motor1=0; //Ë®·§¹Ø±Õ while(1); } 做水塔控制系统,如何改进

void PWM_Int(u16 arr,u16 psc) { GPIO_InitTypeDef GPIO_InitStructure; //¶¨Òå½á¹¹ÌåGPIO_InitStructure TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; //¶¨Òå½á¹¹ÌåTIM_TimeBaseStructure TIM_OCInitTypeDef TIM_OCInitStructure; //¶¨Òå½á¹¹ÌåTIM_OCInitStructure RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);//ʹÄÜPB¶Ë¿ÚʱÖÓ RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);//ʹÄܶ¨Ê±Æ÷3 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //¸´ÓÃģʽÊä³ö GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1; //PB0 ¡¢PB1 GPIO_InitStructure.GPIO_Speed= GPIO_Speed_50MHz; //IO¿ÚËÙ¶È GPIO_Init(GPIOB,&GPIO_InitStructure); //GPIO³õʼ»¯ TIM_TimeBaseStructure.TIM_Period = arr; //ÉèÖÃÏÂÒ»¸ö¸üлµÄ×Ô¶¯ÖØ×°ÔؼĴæÆ÷µÄÖµ TIM_TimeBaseStructure.TIM_Prescaler = psc; //Ô¤·ÖÅäÖµ TIM_TimeBaseStructure.TIM_ClockDivision = 0; //ʱÖÓ·Ö¸î TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //ÏòÉϼÆÊý TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode= TIM_OCMode_PWM1; //PWMÂö³å¿í¶Èµ÷ÖÆ1 TIM_OCInitStructure.TIM_Pulse = 0; //ÉèÖôý×°È벶»ñ±È½Ï¼Ä´æÆ÷µÄÂö³åÖµ TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //ÉèÖÃTIMÊä³ö¼«ÐÔΪ¸ß TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//±È½ÏÊä³öʹÄÜ TIM_OC3Init(TIM3,&TIM_OCInitStructure); TIM_OC4Init(TIM3,&TIM_OCInitStructure); TIM_CtrlPWMOutputs(TIM3,ENABLE);//Ö÷Êä³öʹÄÜ TIM_OC3PreloadConfig(TIM3,TIM_OCPreload_Enable); TIM_OC4PreloadConfig(TIM3,TIM_OCPreload_Enable);//ʹÄÜԤװÔؼĴæÆ÷ TIM_ARRPreloadConfig(TIM3,ENABLE); //ʹÄÜ×Ô¶¯×°ÔØÔÊÐíλ TIM_Cmd(TIM3,ENABLE);//Æô¶¯¶¨Ê±Æ÷3 } void Set_PWMA(int PWM) { TIM_SetCompare3(TIM3,PWM);//ÉèÖÃTIM3ͨµÀ3µÄÕ¼¿Õ±È 3000/7200 } void Set_PWMB(int PWM) { TIM_SetCompare4(TIM3,PWM); 这段代码是一个pwm驱动还是两个pwm驱动欸

最新推荐

recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

罗兰贝格:德隆人力资源管理体系gltp.pptx

罗兰贝格:德隆人力资源管理体系gltp.pptx
recommend-type

JAVA3D的网络三维技术的设计与实现.zip

JAVA3D的网络三维技术的设计与实现
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这