Jupyter分组统计平均数代码
时间: 2023-05-13 15:06:31 浏览: 155
以下是一个使用 Jupyter Notebook 进行分组统计平均数的示例代码:
```python
import pandas as pd
# 创建一个示例数据集
data = {'group': ['A', 'A', 'B', 'B', 'B'], 'value': [1, 2, 3, 4, 5]}
df = pd.DataFrame(data)
# 使用 groupby 函数进行分组统计平均数
result = df.groupby('group').mean()
# 打印结果
print(result)
```
这段代码会将数据集按照 'group' 列进行分组,并计算每组的平均值。最后打印出结果。
相关问题
把下面代码改写成jupyter输出,print("按照省份分组的统计数据:") print(province_stats) print("按照景区类型分组的统计数据:") print(type_stats)
好的,以下是将代码改写为在Jupyter Notebook中输出的方式:
```python
import pandas as pd
# 读取数据文件
data = pd.read_csv("data.csv")
# 按照省份分组,计算每个省份的平均评分、门票价格、评论条数
grouped_by_province = data.groupby("省份")
province_stats = grouped_by_province.agg({
"评分": ["mean", "median", "var"],
"门票": ["mean", "median", "var"],
"评论条数": ["mean", "median", "var"]
})
# 按照景区类型分组,计算每个类型的平均评分、门票价格、评论条数
grouped_by_type = data.groupby("景区类型")
type_stats = grouped_by_type.agg({
"评分": ["mean", "median", "var"],
"门票": ["mean", "median", "var"],
"评论条数": ["mean", "median", "var"]
})
# 输出结果
print("按照省份分组的统计数据:")
display(province_stats)
print("按照景区类型分组的统计数据:")
display(type_stats)
```
在Jupyter Notebook中,我们可以使用`display()`函数来输出结果。这个函数会自动将DataFrame格式的数据以表格的形式显示出来,更加方便查看。
jupyter读取训练集数据并统计数据量、字段数量、分样本数量(flag字段分组汇总)、查看call_cnt字段的最大值和最小值 筛选出通话时长小于等于500,且大于100的用户,计算其平均年龄
首先,您需要将训练集数据加载到Jupyter Notebook。您可以使用Pandas库处理和分析数据是一种可能的现方法:
```python
import pandas as pd
# 读取训练集数据
df = pd.read_csv('train_dataset.csv')
# 统计数据量和字段数量
num_rows = df.shape[0] # 数据量,即行数
num_cols = df.shape[1] # 字段数量,即列数
# 分样本数量(flag字段分组汇总)
sample_counts = df.groupby('flag').size()
# 查看call_cnt字段的最大值和最小值
max_call_cnt = df['call_cnt'].max()
min_call_cnt = df['call_cnt'].min()
# 筛选出通话时长小于等于500,且大于100的用户
filtered_df = df[(df['call_cnt'] <= 500) & (df['call_cnt'] > 100)]
# 计算筛选后用户的平均年龄
average_age = filtered_df['age'].mean()
```
请确保将代码中的"train_dataset.csv"替换为您实际的训练集文件名,并根据您的数据集调整列名和筛选条件。
阅读全文
相关推荐















