Pytorch中使用一维CNN网络对齿轮csv有标签数据集故障分类代码
时间: 2023-11-27 18:53:05 浏览: 102
以下是使用PyTorch实现一维CNN网络对齿轮故障分类的代码:
首先,导入必要的库和模块:
```python
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
```
然后,定义一个自定义的数据集类 GearDataset,用于加载齿轮故障的CSV数据集。该类继承于PyTorch提供的Dataset类,需要重写其中的__len__和__getitem__方法。
```python
class GearDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
return torch.tensor(self.data[idx], dtype=torch.float32), torch.tensor(self.labels[idx], dtype=torch.long)
```
接下来,定义一个一维CNN网络类 GearCNN,该网络类包含两个卷积层和一个全连接层。其中,每个卷积层包括一个卷积层、一个ReLU激活函数和一个最大池化层。
```python
class GearCNN(nn.Module):
def __init__(self):
super(GearCNN, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv1d(1, 16, 3, padding=1),
nn.ReLU(),
nn.MaxPool1d(2)
)
self.conv2 = nn.Sequential(
nn.Conv1d(16, 32, 3, padding=1),
nn.ReLU(),
nn.MaxPool1d(2)
)
self.fc = nn.Linear(32*6, 3)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(-1, 32*6)
x = self.fc(x)
return x
```
然后,读取齿轮故障的CSV数据集,并将其分成训练集和测试集。
```python
data = pd.read_csv('gear_fault_dataset.csv', header=None)
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
接下来,将训练集和测试集转换为GearDataset类的实例,并使用DataLoader类加载数据。
```python
train_dataset = GearDataset(X_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_dataset = GearDataset(X_test, y_test)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
```
然后,定义损失函数和优化器。
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
最后,训练模型并测试模型性能。
```python
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = GearCNN().to(device)
num_epochs = 100
for epoch in range(num_epochs):
running_loss = 0.0
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs.unsqueeze(1))
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch [%d/%d], Loss: %.4f' % (epoch+1, num_epochs, running_loss))
# Test the model
model.eval()
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs.unsqueeze(1))
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the %d test samples: %d %%' % (len(test_dataset), 100 * correct / total))
```
这就是使用PyTorch实现一维CNN网络对齿轮故障分类的完整代码。
阅读全文