svr支持向量机回归 c++代码
时间: 2023-05-29 08:07:00 浏览: 649
以下是使用C语言实现的SVR(支持向量机回归)代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#define MAX_LINE_LENGTH 1024
#define MAX_FEATURES 1000
#define MAX_SAMPLES 1000
#define MAX_ITERATIONS 10000
#define TOLERANCE 0.001
typedef struct {
double alpha;
double b;
} svm_model;
typedef struct {
double* x;
double y;
} sample;
int num_samples, num_features;
sample samples[MAX_SAMPLES];
double kernel[MAX_SAMPLES][MAX_SAMPLES];
double eps = 0.0001;
double kernel_function(double* x1, double* x2) {
double result = 0.0;
for (int i = 0; i < num_features; i++) {
result += (x1[i] - x2[i]) * (x1[i] - x2[i]);
}
return exp(-result / (2.0 * eps * eps));
}
void calculate_kernel() {
for (int i = 0; i < num_samples; i++) {
for (int j = 0; j < num_samples; j++) {
kernel[i][j] = kernel_function(samples[i].x, samples[j].x);
}
}
}
double predict(double* x, svm_model* model) {
double result = 0.0;
for (int i = 0; i < num_samples; i++) {
result += model->alpha * samples[i].y * kernel_function(x, samples[i].x);
}
return result - model->b;
}
double calculate_error(int index, svm_model* model) {
double result = 0.0;
for (int i = 0; i < num_samples; i++) {
result += model->alpha * samples[i].y * kernel[i][index];
}
return result - samples[index].y;
}
void train_svr(svm_model* model) {
double alpha[num_samples];
memset(alpha, 0, sizeof(alpha));
double b = 0.0;
double error[num_samples];
memset(error, 0, sizeof(error));
int iterations = 0;
double alpha_diff = 0.0;
do {
alpha_diff = 0.0;
for (int i = 0; i < num_samples; i++) {
error[i] = calculate_error(i, model);
double old_alpha = alpha[i];
alpha[i] = fmin(fmax(alpha[i] + (samples[i].y - error[i]) / kernel[i][i], 0.0), 1.0);
alpha_diff += fabs(alpha[i] - old_alpha);
}
iterations++;
if (iterations >= MAX_ITERATIONS) {
printf("Maximum iterations reached. Exiting...\n");
exit(1);
}
} while (alpha_diff > TOLERANCE);
for (int i = 0; i < num_samples; i++) {
b += samples[i].y - error[i] - alpha[i] * kernel[i][i];
}
b /= num_samples;
model->b = b;
for (int i = 0; i < num_samples; i++) {
model->alpha += alpha[i] * samples[i].y;
}
}
int main(int argc, char* argv[]) {
if (argc < 2) {
printf("Usage: %s <data_file>\n", argv[0]);
exit(1);
}
FILE* fp = fopen(argv[1], "r");
if (!fp) {
printf("Failed to open file: %s\n", argv[1]);
exit(1);
}
char line[MAX_LINE_LENGTH];
int line_num = 0;
while (fgets(line, MAX_LINE_LENGTH, fp)) {
char* token = strtok(line, ",");
int feature_num = 0;
double* features = (double*) malloc(sizeof(double) * MAX_FEATURES);
while (token) {
if (feature_num == num_features) {
printf("Too many features in line %d. Exiting...\n", line_num);
exit(1);
}
features[feature_num++] = atof(token);
token = strtok(NULL, ",");
}
if (feature_num == 0) {
printf("Empty line %d. Exiting...\n", line_num);
exit(1);
} else if (feature_num == 1) {
printf("Only one feature in line %d. Exiting...\n", line_num);
exit(1);
}
samples[line_num].x = features;
samples[line_num].y = features[feature_num - 1];
num_features = feature_num - 1;
line_num++;
}
num_samples = line_num;
printf("Number of samples: %d\n", num_samples);
printf("Number of features: %d\n", num_features);
calculate_kernel();
svm_model model = {0.0, 0.0};
train_svr(&model);
printf("Trained model: alpha=%f, b=%f\n", model.alpha, model.b);
double test[MAX_FEATURES] = {0.5, 0.6, 0.7};
printf("Prediction: %f\n", predict(test, &model));
return 0;
}
```
这是一个简单的SVR实现,可以从数据文件中读取样本数据,计算并保存核矩阵,通过训练SVR模型来预测新的样本。代码中使用了高斯核函数,可以根据需要修改。需要注意的是,该实现中使用了简化版的SMO算法进行训练,不保证在所有情况下都能得到最优解。
阅读全文