脉冲神经网络实现手写数字识别代码
时间: 2023-07-28 09:07:00 浏览: 223
以下是一个简单的脉冲神经网络实现手写数字识别的示例代码:
```python
import numpy as np
# 载入手写数字数据集
from sklearn.datasets import load_digits
digits = load_digits()
# 将数据集分为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.2, random_state=42)
# 将输入数据进行归一化处理
X_train = X_train / 16.0
X_test = X_test / 16.0
# 将标签数据进行独热编码
def one_hot(y):
n_classes = len(np.unique(y))
return np.eye(n_classes)[y]
y_train = one_hot(y_train)
y_test = one_hot(y_test)
# 定义脉冲神经网络类
class SNN:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
# 初始化权重和阈值
self.W1 = np.random.randn(input_size, hidden_size) / np.sqrt(input_size)
self.b1 = np.zeros((1, hidden_size))
self.W2 = np.random.randn(hidden_size, output_size) / np.sqrt(hidden_size)
self.b2 = np.zeros((1, output_size))
# 定义 sigmoid 激活函数
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
# 定义前向传播函数
def forward(self, x):
self.h = self.sigmoid(np.dot(x, self.W1) + self.b1)
self.y = self.sigmoid(np.dot(self.h, self.W2) + self.b2)
return self.y
# 定义反向传播函数
def backward(self, x, y_true, y_pred, lr):
delta2 = (y_pred - y_true) * y_pred * (1 - y_pred)
delta1 = delta2.dot(self.W2.T) * self.h * (1 - self.h)
self.W2 -= lr * self.h.T.dot(delta2)
self.b2 -= lr * np.sum(delta2, axis=0, keepdims=True)
self.W1 -= lr * x.T.dot(delta1)
self.b1 -= lr * np.sum(delta1, axis=0)
# 定义训练函数
def train(self, X, y, lr, epochs):
for i in range(epochs):
for j in range(X.shape[0]):
x = X[j, :]
y_true = y[j, :]
y_pred = self.forward(x)
self.backward(x, y_true, y_pred, lr)
# 定义预测函数
def predict(self, X):
y_pred = np.zeros((X.shape[0], self.output_size))
for i in range(X.shape[0]):
x = X[i, :]
y_pred[i, :] = self.forward(x)
return np.argmax(y_pred, axis=1)
# 创建脉冲神经网络模型
input_size = X_train.shape[1]
hidden_size = 16
output_size = y_train.shape[1]
snn = SNN(input_size, hidden_size, output_size)
# 训练脉冲神经网络模型
lr = 0.1
epochs = 100
snn.train(X_train, y_train, lr, epochs)
# 在测试集上进行评估
y_pred = snn.predict(X_test)
accuracy = np.mean(y_pred == np.argmax(y_test, axis=1))
print("Accuracy: {:.2f}%".format(accuracy * 100))
```
这个示例代码中,我们使用了一个包含一个隐藏层的脉冲神经网络来实现手写数字识别。我们首先载入手写数字数据集,并将其分为训练集和测试集。然后,我们将输入数据进行归一化处理,将标签数据进行独热编码。接着,我们定义了一个包含前向传播函数、反向传播函数、训练函数和预测函数的脉冲神经网络类。在训练函数中,我们使用随机梯度下降来更新权重和阈值。最后,我们在测试集上进行评估,并输出了模型的准确率。
阅读全文