Uncertainty Loss不确定损失 处理多任务学习,pytorch代码实现
时间: 2024-05-06 21:21:43 浏览: 71
NLP各类任务pytorch代码
可以使用以下代码实现 Uncertainty Loss:
```python
import torch
import torch.nn as nn
class UncertaintyLoss(nn.Module):
def __init__(self, num_tasks, reduction='mean'):
super(UncertaintyLoss, self).__init__()
self.num_tasks = num_tasks
self.loss_fn = nn.CrossEntropyLoss(reduction=reduction)
def forward(self, input, target, lambda_=1.0):
bs, num_classes = input.shape[-2], input.shape[-1]
task_loss = torch.stack([self.loss_fn(input[:, i], target[:, i]) for i in range(self.num_tasks)])
weights = torch.exp(-lambda_ * task_loss)
total_loss = torch.sum(weights * task_loss) / torch.sum(weights)
return total_loss
```
其中,num_tasks 表示任务数量,lambda_ 表示不确定性的权重。在使用时,将输入的 loss 替换为 UncertaintyLoss 即可。
阅读全文