resnet50对cifar10分类
时间: 2023-09-27 14:04:28 浏览: 114
ResNet50是一种深度卷积神经网络,通常用于图像分类任务,它包含50个卷积层和全连接层。CIFAR-10是一个包含10个类别的图像分类数据集,每个类别有6000张32x32像素的彩色图像。由于CIFAR-10图像尺寸较小,通常使用较浅的卷积神经网络进行分类。
尝试使用ResNet50对CIFAR-10进行分类通常会面临两个问题。首先,CIFAR-10图像尺寸较小,ResNet50的输入尺寸为224x224,需要对图像进行缩放处理。其次,CIFAR-10数据集相对较小,使用ResNet50容易出现过拟合问题,需要使用数据增强和正则化等技术进行优化。
因此,对于CIFAR-10分类任务,通常使用轻量级的卷积神经网络如LeNet、AlexNet或VGG等进行分类,这些模型具有较少的参数和计算量,可以更好地适应CIFAR-10数据集。
相关问题
resnet50训练cifar10
根据提供的引用内容,可以得知以下信息:
1. 引用提供了使用Pytorch实现ResNet50模型对CIFAR-100数据集进行训练的代码,其中包括数据集的下载、模型的训练、损失函数的选择和优化器的使用等内容。
2. 引用提供了训练时的一些参数设置,包括训练次数、批次大小、分类类别数量、学习率大小等。
3. 引用提供了使用ResNet对CIFAR-10数据集进行测试的一些经验,包括将数据集分辨率扩大到32X32或224X224等。
综上所述,如果想要使用ResNet50模型对CIFAR-10数据集进行训练,可以参考引用中的代码,并根据实际情况进行参数设置和数据预处理。同时,可以参考引用中的经验,对数据集进行适当的处理,以提高模型的训练效果和识别准确率。
ResNet18实现Cifar10分类
好的,以下是使用PyTorch实现ResNet18对Cifar10数据集进行分类的步骤:
1. 导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
```
2. 定义数据预处理:
```python
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
```
3. 加载数据集:
```python
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100,
shuffle=False, num_workers=2)
```
4. 定义ResNet18模型:
```python
class ResNet18(nn.Module):
def __init__(self, num_classes=10):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64)
)
self.layer2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128)
)
self.layer3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256)
)
self.layer4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512)
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x) + x
x = self.layer2(x) + x
x = self.layer3(x) + x
x = self.layer4(x) + x
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
5. 定义损失函数和优化器:
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
```
6. 定义训练函数:
```python
def train(net, trainloader, criterion, optimizer, epoch):
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Epoch: %d | Loss: %.3f | Acc: %.3f%% (%d/%d)' %
(epoch+1, train_loss/(batch_idx+1), 100.*correct/total, correct, total))
```
7. 定义测试函数:
```python
def test(net, testloader, criterion, epoch):
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Epoch: %d | Loss: %.3f | Acc: %.3f%% (%d/%d)' %
(epoch+1, test_loss/(batch_idx+1), 100.*correct/total, correct, total))
```
8. 开始训练和测试:
```python
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net = ResNet18().to(device)
for epoch in range(200):
train(net, trainloader, criterion, optimizer, epoch)
test(net, testloader, criterion, epoch)
if (epoch + 1) % 50 == 0:
optimizer.param_groups[0]['lr'] /= 10
```
最后,训练完毕后可以保存模型,以便后续使用:
```python
torch.save(net.state_dict(), 'resnet18_cifar10.pth')
```
阅读全文
相关推荐














