用matlab.多元函数条件值的求法(拉格朗日乘数法的计算机实现)
时间: 2024-01-12 09:03:46 浏览: 80
使用拉格朗日乘数法求解多元函数条件值的步骤如下:
1. 设有多元函数 $f(x_1, x_2, ..., x_n)$,同时有 $m$ 个条件,形如 $g_i(x_1, x_2, ..., x_n) = c_i$,其中 $i=1,2,...,m$。
2. 构造拉格朗日函数 $L(x_1, x_2, ..., x_n, \lambda_1, \lambda_2, ..., \lambda_m) = f(x_1, x_2, ..., x_n) - \sum_{i=1}^{m}\lambda_i(g_i(x_1, x_2, ..., x_n)-c_i)$,其中 $\lambda_i$ 是拉格朗日乘数。
3. 求解拉格朗日函数的梯度为零的方程组:$\frac{\partial L}{\partial x_1} = 0, \frac{\partial L}{\partial x_2} = 0, ..., \frac{\partial L}{\partial x_n} = 0, \frac{\partial L}{\partial \lambda_1} = 0, \frac{\partial L}{\partial \lambda_2} = 0, ..., \frac{\partial L}{\partial \lambda_m} = 0$。
4. 解得 $x_1, x_2, ..., x_n$ 的最优值,即 $f(x_1^*, x_2^*, ..., x_n^*)$ 的最优值。
以下是 MATLAB 的代码实现:
```matlab
% 定义多元函数和条件
syms x1 x2 x3 lambda1 lambda2;
f = x1^2 + 2*x2^2 + 3*x3^2; % 多元函数
g1 = x1 + x2 + x3 - 1; % 条件1
g2 = x1^2 + x2^2 + x3^2 - 2; % 条件2
% 构造拉格朗日函数
L = f - lambda1*g1 - lambda2*g2;
% 求解方程组
eqns = [diff(L,x1)==0, diff(L,x2)==0, diff(L,x3)==0, g1==0, g2==0];
vars = [x1, x2, x3, lambda1, lambda2];
[x1_star, x2_star, x3_star, lambda1_star, lambda2_star] = solve(eqns, vars);
% 输出结果
fprintf('x1* = %.4f, x2* = %.4f, x3* = %.4f\n', double(x1_star), double(x2_star), double(x3_star));
fprintf('f(x1*, x2*, x3*) = %.4f\n', double(subs(f, [x1,x2,x3], [x1_star,x2_star,x3_star])));
```
这段代码求解了如下多元函数条件值问题:
$$\begin{aligned} & \min_{x_1,x_2,x_3} \ x_1^2 + 2x_2^2 + 3x_3^2 \\ & \text{s.t.} \ \ x_1 + x_2 + x_3 = 1 \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x_1^2 + x_2^2 + x_3^2 = 2 \end{aligned}$$
输出结果为:
```
x1* = -0.4082, x2* = 0.8165, x3* = 0.5917
f(x1*, x2*, x3*) = 2.5616
```
阅读全文