要求识别非标准格式的浮点数

时间: 2023-10-09 11:08:17 浏览: 36
对于非标准格式的浮点数,我们可以使用有限状态机来进行识别。以下是一个可以识别多种浮点数表示方法的示例代码: ```c #include <stdio.h> #include <ctype.h> // 定义状态类型 typedef enum { START, SIGN, INT, DOT, DEC, EXP, EXP_SIGN, EXP_INT, END } State; int main() { char input[100]; int i = 0; State state = START; printf("请输入一个字符串:"); scanf("%s", input); while (input[i] != '\0') { switch (state) { case START: if (input[i] == '+' || input[i] == '-') { state = SIGN; } else if (isdigit(input[i])) { state = INT; } else { printf("输入不合法!\n"); return 0; } break; case SIGN: if (isdigit(input[i])) { state = INT; } else { printf("输入不合法!\n"); return 0; } break; case INT: if (isdigit(input[i])) { i++; } else if (input[i] == '.') { state = DOT; i++; } else if (input[i] == 'e' || input[i] == 'E') { state = EXP; i++; } else { state = END; } break; case DOT: if (isdigit(input[i])) { state = DEC; i++; } else { printf("输入不合法!\n"); return 0; } break; case DEC: if (isdigit(input[i])) { i++; } else if (input[i] == 'e' || input[i] == 'E') { state = EXP; i++; } else { state = END; } break; case EXP: if (input[i] == '+' || input[i] == '-') { state = EXP_SIGN; i++; } else if (isdigit(input[i])) { state = EXP_INT; i++; } else { printf("输入不合法!\n"); return 0; } break; case EXP_SIGN: if (isdigit(input[i])) { state = EXP_INT; i++; } else { printf("输入不合法!\n"); return 0; } break; case EXP_INT: if (isdigit(input[i])) { i++; } else { state = END; } break; default: printf("输入不合法!\n"); return 0; } } if (state == INT || state == DOT || state == DEC || state == EXP_INT) { printf("输入合法!\n"); } else { printf("输入不合法!\n"); } return 0; } ``` 这个程序使用有限状态机来识别浮点数,其中状态转移规则如下: - START:起始状态,可以是正负号或数字 - SIGN:已经读入正负号,后面必须是数字 - INT:已经读入整数部分,后面可以是小数点、数字或指数符号 - DOT:已经读入小数点,后面必须是数字 - DEC:已经读入小数点和小数部分,后面可以是数字或指数符号 - EXP:已经读入指数符号,后面可以是正负号或数字 - EXP_SIGN:已经读入指数符号和正负号,后面必须是数字 - EXP_INT:已经读入指数符号和数字,后面必须是数字 如果状态机最终停留在 INT、DOT、DEC 或 EXP_INT 状态,则认为输入合法;否则认为输入不合法并退出程序。 需要注意的是,这个程序只是一个简单的示例,还有许多浮点数表示方法没有考虑到,如浮点数前后的空格、多个小数点等。如果需要更完善的识别功能,需要对程序进行进一步扩展。

相关推荐

doc
浮点数的存储格式 基于IEEE 754的浮点数存储格式 IEEE(Institute of Electrical and Electronics Engineers,电子电气工程师协会)在I985年制定的IEEE 754(IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985 )二进制浮点运算规范,是浮点运算部件事实上的工业标准。 在计算机系统的发展过程中,曾经提出过多种方法表示实数,但是到目前为止使用最广泛的是浮点表示法。相对于定点数而言,浮点数利用指数使小数点的位置可以根据需要而上下浮动,从而可以灵活地表达更大范围的实数。 浮点数表示法利用科学计数法来表达实数。通常,将浮点数表示为 ± d.dd…d ×βe,其中d.dd… d 称为有效数字(significand),它具有 p 个数字(称p位有效数字精度),β为基数(Base),e为指数(Exponent),±表示实数的正负[1,2]。更精确地,± d0.d1d2…dp-1 × βe, 表示以下数 ±(d0+d1β-1+… +dp-1β-(p-1))βe,(0≤di<β= 对实数的浮点表示仅作如上的规定是不够的,因为同一实数的浮点表示还不是唯一的。例如,1.0×102 ,0.1 ×103 ,和0.01 ×104 都可以表示100.0。为了达到表示单一性的目的,有必要对其作进一步的规范。规定有效数字的最高位(即前导有效位)必须非零,即0<d0<β。符合该标准的数称为规格化数(Normalized Numbers),否则称为非规格化数(Denormalized Numbers)。

最新推荐

recommend-type

IEEE标准的32位浮点数转换为十进制的计算方法

工作中碰到的一个小问题,经过了一番研究,终于搞明白了,为了以后大家不再挠头,写了这个供大家参考。其中涉及到MODTEST 软件 MODBUS协议 IEEE32位二进制浮点数与十进制小数转换的方法等内容。
recommend-type

Shell脚本处理浮点数的运算和比较实例

2. 输出格式化:`printf`函数可以帮助我们控制浮点数的输出格式,例如`printf "10/2.5=%.2f\n",x/y`将结果保留两位小数。 3. 浮点数比较:`awk`可以直接在条件语句中进行浮点数比较,如`if($1&gt;$2) {...}`,这使得在`...
recommend-type

定点数转浮点数verilog

在IEEE 754浮点数标准中,单精度浮点数由32位组成,包括1位符号位、8位指数位和23位小数位。符号位为0表示正数,为1表示负数。指数位的值是biased exponent,即实际指数加上127。小数位的值是mantissa,即实际小数...
recommend-type

c语言中获取整数和浮点数的符号位

但是,这种方法有两个缺点:一是影响效率,二是格式不够简洁美观。因此,我们需要一种更好的方法来获取符号位。 那么,如何获取符号位呢?一种常见的方法是使用移位操作。移位操作可以将符号位移动到右边第一位,...
recommend-type

如何转换浮点数的二进制格式为十进制

如何转换浮点数的二进制格式为十进制,本文档给出了实现该任务的简单方法,使用一条C语句即可。
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。