如何基于stable diffusion训练出自己的模型,给出详细的python代码
时间: 2023-06-19 16:05:22 浏览: 89
专门针对stable diffusion摆pose的blender模型
Stable diffusion是一种用于训练生成模型的方法,它可以通过不断地添加噪声来优化模型。下面是一个基于PyTorch的stable diffusion训练模型的示例代码:
首先,需要安装`torch`和`torchvision`库:
```python
!pip install torch torchvision
```
然后,导入必要的库:
```python
import torch
import torchvision
from torchvision import datasets, transforms
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
```
定义模型类:
```python
class Generator(nn.Module):
def __init__(self, z_dim):
super().__init__()
self.fc1 = nn.Linear(z_dim, 128)
self.fc2 = nn.Linear(128, 256)
self.fc3 = nn.Linear(256, 512)
self.fc4 = nn.Linear(512, 784)
def forward(self, z):
h = F.relu(self.fc1(z))
h = F.relu(self.fc2(h))
h = F.relu(self.fc3(h))
x = torch.sigmoid(self.fc4(h))
return x
```
定义训练函数:
```python
def train(model, dataloader, device, optimizer, alpha=0.1):
model.train()
for batch_idx, (data, _) in enumerate(dataloader):
data = data.to(device)
# Sample noise z from standard normal distribution
z = torch.randn(data.shape[0], z_dim).to(device)
# Add noise to the data
data_noisy = data + torch.randn_like(data) * alpha
# Forward pass
gen = model(z)
gen_noisy = model(z) + torch.randn_like(gen) * alpha
# Compute losses
loss = F.binary_cross_entropy(gen.flatten(), data.flatten()) + F.binary_cross_entropy(gen_noisy.flatten(), data_noisy.flatten())
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
设置超参数:
```python
z_dim = 100
batch_size = 128
lr = 0.001
epochs = 10
alpha = 0.1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
```
加载数据集:
```python
transform = transforms.Compose([transforms.ToTensor()])
trainset = datasets.MNIST('../data', train=True, download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True)
```
实例化模型和优化器:
```python
model = Generator(z_dim).to(device)
optimizer = optim.Adam(model.parameters(), lr=lr)
```
开始训练:
```python
for epoch in range(epochs):
train(model, trainloader, device, optimizer, alpha=alpha)
print(f"Epoch {epoch+1}/{epochs} complete!")
```
这是一个简单的stable diffusion训练模型的示例,你可以根据自己的需求进行修改。
阅读全文