python画三维地图,其中三个坐标轴长度均为150,在(75,75,0)处有半径为35的上半球
时间: 2024-03-08 20:47:01 浏览: 88
您可以使用Python的Matplotlib库中的mpl_toolkits.mplot3d模块来画三维图形。以下是一个示例代码:
```python
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 设置坐标轴范围
ax.set_xlim([0, 150])
ax.set_ylim([0, 150])
ax.set_zlim([0, 150])
# 画上半球
u, v = np.mgrid[0:np.pi:30j, 0:2*np.pi:30j]
x = 35 * np.sin(u) * np.cos(v) + 75
y = 35 * np.sin(u) * np.sin(v) + 75
z = 35 * np.cos(u)
ax.plot_surface(x, y, z, color='blue')
# 显示图形
plt.show()
```
这个代码会画出一个三维坐标轴,坐标轴长度均为150,并在(75, 75, 0)处画一个半径为35的上半球。
相关问题
python画三维地图,其中三个坐标轴长度均为180,在(150,150,0)处有半径为23的上半球,在(75,75,0)处有半径为35的上半球,在(75,75,0)处有半径为35的上半球
您可以使用Python的Matplotlib库中的mpl_toolkits.mplot3d模块来画三维图形。以下是一个示例代码:
```python
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 设置坐标轴范围
ax.set_xlim([0, 180])
ax.set_ylim([0, 180])
ax.set_zlim([0, 180])
# 画三个球体
u, v = np.mgrid[0:np.pi/2:30j, 0:2*np.pi:30j]
x1 = 23 * np.sin(u) * np.cos(v) + 150
y1 = 23 * np.sin(u) * np.sin(v) + 150
z1 = 23 * np.cos(u)
ax.plot_surface(x1, y1, z1, color='blue')
u, v = np.mgrid[0:np.pi/2:30j, 0:2*np.pi:30j]
x2 = 35 * np.sin(u) * np.cos(v) + 75
y2 = 35 * np.sin(u) * np.sin(v) + 75
z2 = 35 * np.cos(u)
ax.plot_surface(x2, y2, z2, color='red')
u, v = np.mgrid[0:np.pi/2:30j, 0:2*np.pi:30j]
x3 = 35 * np.sin(u) * np.cos(v) + 75
y3 = 35 * np.sin(u) * np.sin(v) + 75
z3 = 35 * np.cos(u)
ax.plot_surface(x3, y3, z3, color='green')
# 显示图形
plt.show()
```
这个代码会画出一个三维坐标轴,坐标轴长度均为180,并在(150, 150, 0)处画一个半径为23的上半球,在(75, 75, 0)处画一个半径为35的上半球,在(75, 75, 0)处画一个半径为35的上半球。
用Python编写以下程序:三个二维数组分别代表三个二维坐标系坐标,求这三个坐标所在圆的半径
假设三个二维坐标系坐标依次存储在三个二维数组 x, y, z 中,可以按照如下步骤求解三个坐标所在圆的半径:
1. 分别计算三个坐标系中任意两个点之间的距离,即:
d_x1x2 = ((x[1][0] - x[0][0])**2 + (x[1][1] - x[0][1])**2)**0.5
d_x1x3 = ((x[2][0] - x[0][0])**2 + (x[2][1] - x[0][1])**2)**0.5
d_x2x3 = ((x[2][0] - x[1][0])**2 + (x[2][1] - x[1][1])**2)**0.5
d_y1y2 = ((y[1][0] - y[0][0])**2 + (y[1][1] - y[0][1])**2)**0.5
d_y1y3 = ((y[2][0] - y[0][0])**2 + (y[2][1] - y[0][1])**2)**0.5
d_y2y3 = ((y[2][0] - y[1][0])**2 + (y[2][1] - y[1][1])**2)**0.5
d_z1z2 = ((z[1][0] - z[0][0])**2 + (z[1][1] - z[0][1])**2)**0.5
d_z1z3 = ((z[2][0] - z[0][0])**2 + (z[2][1] - z[0][1])**2)**0.5
d_z2z3 = ((z[2][0] - z[1][0])**2 + (z[2][1] - z[1][1])**2)**0.5
2. 利用海伦公式计算三个坐标系中的三角形面积,即:
s_x = (d_x1x2 + d_x1x3 + d_x2x3) / 2
area_x = (s_x * (s_x - d_x1x2) * (s_x - d_x1x3) * (s_x - d_x2x3))**0.5
s_y = (d_y1y2 + d_y1y3 + d_y2y3) / 2
area_y = (s_y * (s_y - d_y1y2) * (s_y - d_y1y3) * (s_y - d_y2y3))**0.5
s_z = (d_z1z2 + d_z1z3 + d_z2z3) / 2
area_z = (s_z * (s_z - d_z1z2) * (s_z - d_z1z3) * (s_z - d_z2z3))**0.5
3. 根据三个二维坐标系中的三角形面积和海伦公式中的半径公式计算每个坐标所在圆的半径,即:
radius_x = (d_x1x2 * d_x1x3 * d_x2x3 / (4 * area_x))**0.5
radius_y = (d_y1y2 * d_y1y3 * d_y2y3 / (4 * area_y))**0.5
radius_z = (d_z1z2 * d_z1z3 * d_z2z3 / (4 * area_z))**0.5
完整代码如下:
```python
# 三个二维坐标系坐标
x = [[0, 0], [1, 0], [0, 1]]
y = [[0, 0], [1, 0], [1, 1]]
z = [[0, 0], [0, 1], [-1, 0]]
# 计算三个坐标系中任意两个点之间的距离
d_x1x2 = ((x[1][0] - x[0][0])**2 + (x[1][1] - x[0][1])**2)**0.5
d_x1x3 = ((x[2][0] - x[0][0])**2 + (x[2][1] - x[0][1])**2)**0.5
d_x2x3 = ((x[2][0] - x[1][0])**2 + (x[2][1] - x[1][1])**2)**0.5
d_y1y2 = ((y[1][0] - y[0][0])**2 + (y[1][1] - y[0][1])**2)**0.5
d_y1y3 = ((y[2][0] - y[0][0])**2 + (y[2][1] - y[0][1])**2)**0.5
d_y2y3 = ((y[2][0] - y[1][0])**2 + (y[2][1] - y[1][1])**2)**0.5
d_z1z2 = ((z[1][0] - z[0][0])**2 + (z[1][1] - z[0][1])**2)**0.5
d_z1z3 = ((z[2][0] - z[0][0])**2 + (z[2][1] - z[0][1])**2)**0.5
d_z2z3 = ((z[2][0] - z[1][0])**2 + (z[2][1] - z[1][1])**2)**0.5
# 计算三个坐标系中的三角形面积
s_x = (d_x1x2 + d_x1x3 + d_x2x3) / 2
area_x = (s_x * (s_x - d_x1x2) * (s_x - d_x1x3) * (s_x - d_x2x3))**0.5
s_y = (d_y1y2 + d_y1y3 + d_y2y3) / 2
area_y = (s_y * (s_y - d_y1y2) * (s_y - d_y1y3) * (s_y - d_y2y3))**0.5
s_z = (d_z1z2 + d_z1z3 + d_z2z3) / 2
area_z = (s_z * (s_z - d_z1z2) * (s_z - d_z1z3) * (s_z - d_z2z3))**0.5
# 计算每个坐标所在圆的半径
radius_x = (d_x1x2 * d_x1x3 * d_x2x3 / (4 * area_x))**0.5
radius_y = (d_y1y2 * d_y1y3 * d_y2y3 / (4 * area_y))**0.5
radius_z = (d_z1z2 * d_z1z3 * d_z2z3 / (4 * area_z))**0.5
# 输出结果
print("x 坐标系所在圆的半径为:", radius_x)
print("y 坐标系所在圆的半径为:", radius_y)
print("z 坐标系所在圆的半径为:", radius_z)
```
阅读全文