opencvsharp高精度直线拟合
时间: 2023-09-17 19:08:13 浏览: 198
在OpenCVSharp中,可以使用HoughLines方法进行直线检测,但是它只能得到直线的极坐标表示,而不是直线的参数。如果需要进行高精度直线拟合,可以使用RANSAC算法。
RANSAC(Random Sample Consensus)是一种随机抽样一致性算法,它可以从一组含有异常数据的观测数据中,估计出一个数学模型的参数,而不受异常数据的影响。
下面是使用OpenCVSharp和RANSAC算法进行直线拟合的示例代码:
```csharp
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using OpenCvSharp;
namespace LineFitting
{
class Program
{
static void Main(string[] args)
{
Mat img = Cv2.ImRead("test.jpg", ImreadModes.GrayScale);
Mat edges = new Mat();
Cv2.Canny(img, edges, 50, 200);
// Detect lines using Hough transform
LineSegmentPoint[] lines = Cv2.HoughLinesP(edges, 1, Math.PI / 180, 50, 50, 10);
// Convert lines to points
List<Point2f> points = new List<Point2f>();
foreach (var line in lines)
{
points.Add(new Point2f(line.P1.X, line.P1.Y));
points.Add(new Point2f(line.P2.X, line.P2.Y));
}
// RANSAC line fitting
int numIterations = 1000;
float threshold = 1.0f;
int numPointsToFit = 2;
LineSegmentPoint bestLine = RansacLineFitting(points, numIterations, threshold, numPointsToFit);
// Draw the line
Cv2.Line(img, bestLine.P1, bestLine.P2, Scalar.Red, 2);
Cv2.ImShow("Line Fitting", img);
Cv2.WaitKey();
Cv2.DestroyAllWindows();
}
static LineSegmentPoint RansacLineFitting(List<Point2f> points, int numIterations, float threshold, int numPointsToFit)
{
LineSegmentPoint bestLine = new LineSegmentPoint();
int bestScore = 0;
for (int i = 0; i < numIterations; i++)
{
// Choose two random points
Point2f p1 = points[new Random().Next(points.Count)];
Point2f p2 = points[new Random().Next(points.Count)];
// Fit line to these points
LineSegmentPoint line = new LineSegmentPoint(p1, p2);
// Calculate score for this line
int score = 0;
foreach (var point in points)
{
float distance = DistanceToLine(line, point);
if (distance < threshold)
score++;
}
// Check if this is the best line so far
if (score > bestScore && score >= numPointsToFit)
{
bestLine = line;
bestScore = score;
}
}
return bestLine;
}
static float DistanceToLine(LineSegmentPoint line, Point2f point)
{
float px = line.P2.X - line.P1.X;
float py = line.P2.Y - line.P1.Y;
float something = px * px + py * py;
float u = ((point.X - line.P1.X) * px + (point.Y - line.P1.Y) * py) / something;
float x = line.P1.X + u * px;
float y = line.P1.Y + u * py;
float dx = x - point.X;
float dy = y - point.Y;
return (float)Math.Sqrt(dx * dx + dy * dy);
}
}
}
```
该代码首先使用Canny边缘检测算法检测输入图像的边缘。然后使用HoughLinesP方法从边缘图像中检测直线,并将直线转换为点。接下来,使用RANSAC算法对这些点进行直线拟合,找到最佳拟合直线。最后,使用OpenCVSharp的Line方法在输入图像中绘制该直线。
阅读全文