matlab仿真小车路径规划代码、
时间: 2023-10-22 21:06:49 浏览: 77
以下是一个简单的matlab仿真小车路径规划代码,使用了A*算法实现路径规划。
```
%% 定义地图
map = zeros(20,20); % 20x20的地图
map(5:15,5:15) = 1; % 障碍物
start = [1,1]; % 起点
goal = [20,20]; % 终点
%% A*算法实现路径规划
path = A_star(map,start,goal);
%% 绘制地图和路径
figure;
imagesc(map); colormap(flipud(gray)); hold on;
plot(start(2),start(1),'bo','MarkerSize',10,'LineWidth',3);
plot(goal(2),goal(1),'go','MarkerSize',10,'LineWidth',3);
if ~isempty(path)
plot(path(:,2), path(:,1), 'r', 'LineWidth', 2);
end
```
A*算法的实现如下:
```
function path = A_star(map,start,goal)
% A*算法实现路径规划
% 初始化
[nrow, ncol] = size(map);
closed = zeros(nrow, ncol);
came_from = zeros(nrow, ncol);
g_score = Inf(nrow, ncol);
f_score = Inf(nrow, ncol);
% 起点的g_score和f_score为0
g_score(start(1), start(2)) = 0;
f_score(start(1), start(2)) = heuristic(start, goal);
% 对于每个节点,记录它的f_score和g_score
open = [start, f_score(start(1), start(2))];
while ~isempty(open)
% 选出f_score最小的节点
[~, idx] = min(open(:,3));
current = open(idx,:);
% 到达终点,返回路径
if isequal(current(1:2), goal)
path = reconstruct_path(came_from, current);
return;
end
% 从open列表中删除当前节点
open(idx,:) = [];
% 将当前节点加入closed列表中
closed(current(1), current(2)) = 1;
% 遍历当前节点的邻居
for i = -1:1
for j = -1:1
% 跳过当前节点和对角线上的邻居
if i == 0 && j == 0 || abs(i) == abs(j)
continue;
end
% 邻居节点的位置
neighbor = current(1:2) + [i,j];
% 邻居节点在地图范围内,且不是障碍物
if neighbor(1) >= 1 && neighbor(1) <= nrow && ...
neighbor(2) >= 1 && neighbor(2) <= ncol && ...
map(neighbor(1), neighbor(2)) == 0
tentative_g_score = g_score(current(1), current(2)) + ...
euclidean_distance(current(1:2), neighbor);
% 如果邻居节点已经在closed列表中,跳过
if closed(neighbor(1), neighbor(2))
continue;
end
% 如果邻居节点不在open列表中,加入open列表
if ~ismember(neighbor(1:2), open(:,1:2), 'rows')
open = [open; neighbor, Inf];
end
% 更新邻居节点的g_score和f_score
if tentative_g_score < g_score(neighbor(1), neighbor(2))
came_from(neighbor(1), neighbor(2)) = sub2ind([nrow, ncol], current(1), current(2));
g_score(neighbor(1), neighbor(2)) = tentative_g_score;
f_score(neighbor(1), neighbor(2)) = g_score(neighbor(1), neighbor(2)) + heuristic(neighbor, goal);
idx = find(open(:,1) == neighbor(1) & open(:,2) == neighbor(2));
open(idx,3) = f_score(neighbor(1), neighbor(2));
end
end
end
end
end
% 没有找到路径
path = [];
end
function h = heuristic(a, b)
% 计算启发式函数,这里使用欧几里得距离
h = euclidean_distance(a, b);
end
function d = euclidean_distance(a, b)
% 计算欧几里得距离
d = norm(a - b);
end
function path = reconstruct_path(came_from, current)
% 从came_from列表中重建路径
path = [current(1), current(2)];
while came_from(current(1), current(2)) ~= 0
current = ind2sub(size(came_from), came_from(current(1), current(2)));
path = [current(1), current(2); path];
end
end
```
阅读全文