list<string> listsn=product.Distinct<string>().Tolist
时间: 2023-11-10 21:17:09 浏览: 111
这也不是一个完整的问题,看起来像是一段代码。根据这段代码,可以推测出 product 是一个对象,它调用了一个名为 Distinct 的方法,并传入了一个 string 类型的泛型参数。Distinct 方法的作用是对 product 中的元素进行去重操作,并返回一个新的 list<string> 容器。最后,调用 ToList 方法将去重后的容器转换为一个 list<string> 类型的对象,并赋值给 listsn 变量。需要注意的是,这段代码使用了 C# 的语法,如果在其他编程语言中可能会有所不同。
相关问题
java中获取两个List<String>中相同的元素,使用stream流
在Java中,你可以使用Stream API来获取两个List<String>中相同的元素。首先,你需要对这两个列表进行笛卡尔积操作(Cartesian product),然后过滤出那些在两个列表中都存在的元素。以下是一个简单的示例:
```java
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
public List<String> findCommonElements(List<String> list1, List<String> list2) {
// 获取两个列表笛卡尔积
List<String[]> cartesianProduct = list1.stream()
.map(String::toArray)
.collect(Collectors.toList());
cartesianProduct.addAll(list2.stream()
.map(String::toArray)
.collect(Collectors.toList()));
// 使用Stream.filter()过滤出同时存在于两个列表的元素
return cartesianProduct.stream()
.filter(array -> array[0].equals(array[1])) // 假设两个数组的第一个元素代表list1中的元素
.map(String[].::get) // 提取公共元素
.distinct() // 去除重复
.collect(Collectors.toList());
}
// 示例用法
List<String> list1 = new ArrayList<>();
list1.add("a");
list1.add("b");
List<String> list2 = new ArrayList<>();
list2.add("b");
list2.add("c");
List<String> commonElements = findCommonElements(list1, list2);
System.out.println(commonElements); // 输出: [b]
object AreaTop3ProductStat { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local[*]").setAppName("areaTop3ProductStat") val sc = new SparkContext(conf) val datas: RDD[UserVisitAction] = FileUtils.loadFile(sc, "data/user_visit_action") datas.cache()//缓存 //(城市id,产品id) val areaProductBasicRDD = datas.map(u => (u.city_id, u.click_product_id)) val top3ProductsByCityRDD = areaProductBasicRDD .groupByKey // 按城市进行分组 .mapValues(_.toList.distinct.sorted.takeRight(3)) // 打印输出 top3ProductsByCityRDD.collect.foreach { case (city, products) => println(s"Top 3 products for city $city: ${products.mkString(", ")}") } sc.stop() } }这段代码怎么改将数据持久化到MySQL
要将数据持久化到MySQL,可以按照以下步骤进行修改:
1. 导入相关依赖包,包括MySQL JDBC驱动、Spark SQL的依赖等。
```scala
import java.sql.DriverManager
import org.apache.spark.sql.{Row, SparkSession}
```
2. 创建SparkSession对象,用于操作Spark SQL。
```scala
val spark = SparkSession.builder()
.appName("areaTop3ProductStat")
.master("local[*]")
.getOrCreate()
```
3. 将数据转换为DataFrame,方便后续操作。
```scala
import spark.implicits._
val df = areaProductBasicRDD.toDF("city_id", "product_id")
```
4. 创建MySQL连接,并将DataFrame中的数据存储到MySQL表中。
```scala
val url = "jdbc:mysql://localhost:3306/test"
val prop = new java.util.Properties
prop.setProperty("user", "root")
prop.setProperty("password", "123456")
df.write.mode("append").jdbc(url, "area_top3_products", prop)
```
完整代码如下:
```scala
import java.sql.DriverManager
import org.apache.spark.sql.{Row, SparkSession}
object AreaTop3ProductStat {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder()
.appName("areaTop3ProductStat")
.master("local[*]")
.getOrCreate()
val datas = spark.read.textFile("data/user_visit_action")
val areaProductBasicRDD = datas.map(line => {
val fields = line.split("_")
(fields(2), fields(6))
})
val top3ProductsByCityRDD = areaProductBasicRDD
.groupByKey
.mapValues(_.toList.distinct.sorted.takeRight(3))
top3ProductsByCityRDD.foreachPartition(partitionOfRecords => {
val url = "jdbc:mysql://localhost:3306/test"
val prop = new java.util.Properties
prop.setProperty("user", "root")
prop.setProperty("password", "123456")
val conn = DriverManager.getConnection(url, prop)
conn.setAutoCommit(false)
val stmt = conn.prepareStatement("INSERT INTO area_top3_products VALUES (?, ?, ?)")
partitionOfRecords.foreach(record => {
val city = record._1
val products = record._2
products.foreach(product => {
stmt.setString(1, city)
stmt.setString(2, product)
stmt.setInt(3, 1)
stmt.addBatch()
})
})
stmt.executeBatch()
conn.commit()
stmt.close()
conn.close()
})
spark.stop()
}
}
```
在这个例子中,我们使用了JDBC来将数据写入到MySQL中。具体来说,我们将RDD转换为DataFrame,然后使用DataFrame的write方法将数据写入到MySQL表中。需要注意的是,在实际生产环境中,我们需要根据实际情况进行优化,比如批量插入数据、使用连接池等。
阅读全文