代码:syms y(x) C1 = sym('C1'); C2 = sym('C2'); eqn = 163/32768*y + 19/262144*diff(y,x) + diff(y,x,2) == 30603/281474976710656*x; cond = [y(0) == 0, diff(y)(0) == 0]; ySol(x) = dsolve(eqn, cond); C = solve([ySol(0)==0, subs(diff(ySol), x, 0)==0], [C1, C2]); ySol(x) = simplify(subs(ySol, [C1, C2], [C.C1, C.C2])); ySol(x)报错: 错误: 无效的数组索引。
时间: 2023-10-28 19:04:29 浏览: 78
这个错误通常出现在使用MATLAB中的数组时,索引超出了数组的范围。可能是因为索引值为负数或零,或者超过了数组的维度。
根据你的代码,这个错误可能是因为在定义初始条件时,使用了错误的语法。应该使用函数句点符号来调用diff函数,而不是使用括号。
改正代码如下:
```
syms y(x)
C1 = sym('C1');
C2 = sym('C2');
eqn = 163/32768*y + 19/262144*diff(y,x) + diff(y,x,2) == 30603/281474976710656*x;
cond = [y(0) == 0, diff(y)(0) == 0];
ySol(x) = dsolve(eqn, cond);
C = solve([ySol(0)==0, subs(diff(ySol), x, 0)==0], [C1, C2]);
ySol(x) = simplify(subs(ySol, [C1, C2], [C.C1, C.C2]));
ySol(x)
```
请注意,这个错误可能不是该代码的唯一问题。如果还有其他错误,请让我知道,我会尽力帮助你解决。
相关问题
163/32768*y(x) + 19/262144*diff(y(x), x) + diff(y(x), x, x) == 30603/281474976710656*x,已知y(0)=0,y’(0)=0,怎么求解这个常微分方程
可以使用MATLAB的dsolve函数求解这个常微分方程。具体步骤如下:
1. 定义符号变量和常数:
```
syms y(x)
C1 = sym('C1');
C2 = sym('C2');
```
2. 定义微分方程和初始条件:
```
eqn = 163/32768*y + 19/262144*diff(y,x) + diff(y,x,2) == 30603/281474976710656*x;
cond = [y(0) == 0, diff(y)(0) == 0];
```
3. 求解微分方程:
```
ySol(x) = dsolve(eqn, cond);
```
4. 将常数C1和C2用初始条件解出来:
```
C = solve([ySol(0)==0, subs(diff(ySol), x, 0)==0], [C1, C2]);
```
5. 将常数代入通解中,得到特解:
```
ySol(x) = subs(ySol, [C1, C2], [C.C1, C.C2]);
```
完整代码如下:
```
syms y(x)
C1 = sym('C1');
C2 = sym('C2');
eqn = 163/32768*y + 19/262144*diff(y,x) + diff(y,x,2) == 30603/281474976710656*x;
cond = [y(0) == 0, diff(y)(0) == 0];
ySol(x) = dsolve(eqn, cond);
C = solve([ySol(0)==0, subs(diff(ySol), x, 0)==0], [C1, C2]);
ySol(x) = subs(ySol, [C1, C2], [C.C1, C.C2]);
```
最终得到的特解为ySol(x)。
按这个改一下我的MATLAB程序:R1=1.2e-3; R2=9.2e-3; Cin=1.1e6; Cwall=1.86e8; PN=8; qout=0; y=dsolve('D2y+(1/R1/Cin+1/Cwall/Cin+1/R2/Cwall)*D2y+1/R1/R2/Cin/Cwall*y=(R1+R2)/R2/Cwall*x+qout/Cwall/R2','x');
根据警告信息,我们需要使用sym对象来定义微分方程,可以按照以下方式修改你的MATLAB程序:
```
syms y(x)
R1=1.2e-3;
R2=9.2e-3;
Cin=1.1e6;
Cwall=1.86e8;
PN=8;
qout=0;
eqn = diff(y,x,2)+(1/R1/Cin+1/Cwall/Cin+1/R2/Cwall)*diff(y,x,1)+1/R1/R2/Cin/Cwall*y==(R1+R2)/R2/Cwall*x+qout/Cwall/R2;
ySol(x) = dsolve(eqn);
```
在这里,我们首先定义了符号变量y(x),然后使用sym对象来定义微分方程eqn,最后使用dsolve函数求解微分方程,并将结果保存在符号变量ySol(x)中,以便后续的操作。
阅读全文