请给我一份使用机器学习方法构建行业情感词典的python代码,并给出注释
时间: 2024-03-07 18:47:51 浏览: 72
Python基于情感词典和机器学习对新闻和微博评论的情感分析源码+项目说明+数据集+代码注释.zip
4星 · 用户满意度95%
好的,以下是一个使用机器学习方法构建行业情感词典的Python代码,希望对您有所帮助:
首先,我们需要导入必要的库:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
```
然后,我们需要读取行业文本数据集。假设我们有一个名为“industry_data.csv”的数据集,它由两列组成,第一列是文本内容,第二列是情感标签(例如0表示负面情感,1表示中性情感,2表示正面情感)。
```python
# 读取行业文本数据集
data = pd.read_csv('industry_data.csv')
```
接下来,我们需要将数据集拆分为训练集和测试集。这里我们选择使用train_test_split函数来拆分数据集,将80%的数据用于训练,20%的数据用于测试。
```python
# 拆分训练集和测试集
train_data, test_data, train_labels, test_labels = train_test_split(data['text'], data['label'], test_size=0.2, random_state=42)
```
然后,我们需要使用TfidfVectorizer将文本数据转换为数值特征。这里我们选择使用TfidfVectorizer是因为它可以将文本转换为基于TF-IDF的数值特征,这些特征可以用于训练机器学习模型。
```python
# 将文本转换为数值特征
vectorizer = TfidfVectorizer()
train_features = vectorizer.fit_transform(train_data)
test_features = vectorizer.transform(test_data)
```
接下来,我们选择使用KMeans聚类算法将文本数据聚类为若干个簇。KMeans算法是一种无监督学习算法,它可以将输入的数据集聚类为K个簇,其中每个簇代表一种行业情感。
```python
# 使用KMeans算法将文本聚类为K个簇
num_clusters = 3 # 假设我们要将文本聚为3个簇
model = KMeans(n_clusters=num_clusters, random_state=42)
model.fit(train_features)
```
接下来,我们需要为每个簇分配一个情感标签。这里我们选择使用轮廓系数作为评估指标,它可以告诉我们聚类结果的稳定性和紧密度。
```python
# 为每个簇分配情感标签
train_cluster_labels = model.predict(train_features)
train_silhouette_score = silhouette_score(train_features, train_cluster_labels)
print('Train Silhouette Score:', train_silhouette_score)
# 在测试集上评估模型性能
test_cluster_labels = model.predict(test_features)
test_silhouette_score = silhouette_score(test_features, test_cluster_labels)
print('Test Silhouette Score:', test_silhouette_score)
```
最后,我们可以将每个簇中的高权重特征作为该簇的情感词。这里我们选择使用TfidfVectorizer.get_feature_names()方法来获取特征名称,然后根据特征权重排序来选择前N个特征作为情感词。
```python
# 获取每个簇的情感词
for i in range(num_clusters):
cluster_features = train_features[train_cluster_labels == i]
cluster_feature_names = vectorizer.get_feature_names()
cluster_weights = np.asarray(cluster_features.mean(axis=0)).ravel().tolist()
cluster_weights_df = pd.DataFrame({'feature_names': cluster_feature_names, 'weights': cluster_weights})
cluster_weights_df = cluster_weights_df.sort_values(by='weights', ascending=False)
top_n_words = 10 # 假设我们选取每个簇的前10个特征作为情感词
cluster_top_n_words = cluster_weights_df.head(top_n_words)['feature_names'].tolist()
print('Cluster %d:' % i)
print(cluster_top_n_words)
```
完整代码如下:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
# 读取行业文本数据集
data = pd.read_csv('industry_data.csv')
# 拆分训练集和测试集
train_data, test_data, train_labels, test_labels = train_test_split(data['text'], data['label'], test_size=0.2, random_state=42)
# 将文本转换为数值特征
vectorizer = TfidfVectorizer()
train_features = vectorizer.fit_transform(train_data)
test_features = vectorizer.transform(test_data)
# 使用KMeans算法将文本聚类为K个簇
num_clusters = 3 # 假设我们要将文本聚为3个簇
model = KMeans(n_clusters=num_clusters, random_state=42)
model.fit(train_features)
# 为每个簇分配情感标签
train_cluster_labels = model.predict(train_features)
train_silhouette_score = silhouette_score(train_features, train_cluster_labels)
print('Train Silhouette Score:', train_silhouette_score)
# 在测试集上评估模型性能
test_cluster_labels = model.predict(test_features)
test_silhouette_score = silhouette_score(test_features, test_cluster_labels)
print('Test Silhouette Score:', test_silhouette_score)
# 获取每个簇的情感词
for i in range(num_clusters):
cluster_features = train_features[train_cluster_labels == i]
cluster_feature_names = vectorizer.get_feature_names()
cluster_weights = np.asarray(cluster_features.mean(axis=0)).ravel().tolist()
cluster_weights_df = pd.DataFrame({'feature_names': cluster_feature_names, 'weights': cluster_weights})
cluster_weights_df = cluster_weights_df.sort_values(by='weights', ascending=False)
top_n_words = 10 # 假设我们选取每个簇的前10个特征作为情感词
cluster_top_n_words = cluster_weights_df.head(top_n_words)['feature_names'].tolist()
print('Cluster %d:' % i)
print(cluster_top_n_words)
```
希望这份代码能对您有所帮助,如果您有任何问题或需求,请随时告诉我。
阅读全文