def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model如何加入basic block
时间: 2023-09-04 09:10:04 浏览: 109
您可以在"MEAN_Spot"函数中加入basic block,可以通过以下步骤实现:
1. 定义basic block函数,例如:
```
def basic_block(inputs):
x = layers.Conv2D(8, (3,3), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)
x = layers.BatchNormalization()(x)
x = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(x)
x = layers.Dropout(0.3)(x)
return x
```
2. 在"MEAN_Spot"函数中调用basic block函数,例如:
```
# channel 1
inputs1 = layers.Input(shape=(42,42,1))
conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1)
bn1 = layers.BatchNormalization()(conv1)
pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1)
basic1 = basic_block(pool1)
# channel 2
inputs2 = layers.Input(shape=(42,42,1))
conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2)
bn2 = layers.BatchNormalization()(conv2)
pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2)
basic2 = basic_block(pool2)
# channel 3
inputs3 = layers.Input(shape=(42,42,1))
conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3)
bn3 = layers.BatchNormalization()(conv3)
pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3)
basic3 = basic_block(pool3)
# merge 1
merged = layers.Concatenate()([basic1, basic2, basic3])
```
3. 继续进行后续的模型构建和编译。
阅读全文