# 创建图像 grid_kws = {"width_ratios": (.9, .9, .05), "wspace": 0.2} f, (ax1, ax2, cbar_ax) = plt.subplots(1, 3, gridspec_kw=grid_kws, figsize = (18, 9)) # 定义调色板 cmap = sns.diverging_palette(0, 230, 90, 60, as_cmap=True) # 画 NotFraud 表中的各个特征间相关性热力图 # 计算上三角mask矩阵 mask1 = np.zeros_like(corr_NotFraud) indices = np.triu_indices_from(corr_NotFraud) mask1[indices] = True # 过滤空值 mask1 = mask1[1:, :-1] corr_NotFraud = corr_NotFraud.iloc[1:, :-1].copy() ax1 =sns.???(corr_NotFraud, ax = ax1, vmin = -1, vmax = 1, cmap = cmap, square = False, \ annot=True, fmt=".2f", linewidths = 0.5, mask = mask1, cbar = False) ax1.set_xticklabels(ax1.get_xticklabels(), size = 16); ax1.set_yticklabels(ax1.get_yticklabels(), size = 16); ax1.set_title('fraud=1的热力图', size = 20)
时间: 2023-09-18 13:14:01 浏览: 166
kws.zip_KWS
这段代码中缺少 `heatmap` 方法名,应该是 `sns.heatmap`。因此,你可以使用以下代码画 NotFraud 表中的各个特征间相关性热力图:
```
ax1 = sns.heatmap(corr_NotFraud, ax=ax1, vmin=-1, vmax=1, cmap=cmap, square=False, annot=True, fmt=".2f", linewidths=0.5, mask=mask1, cbar=False)
```
其中,`corr_NotFraud` 是相关系数矩阵,`ax=ax1` 表示将热力图绘制在 `ax1` 坐标轴上,`vmin` 和 `vmax` 分别表示颜色映射的最小值和最大值,`cmap` 表示使用的颜色映射,`square=False` 表示关闭正方形显示模式,`annot=True` 表示在每个格子内显示数值,`fmt=".2f"` 表示显示的数值的格式,`linewidths=0.5` 表示格子之间的线宽度,`mask=mask1` 表示过滤空值,`cbar=False` 表示关闭颜色条。
阅读全文