self.classifier = nn.SequentialCell( nn.Dropout(0.5), nn.Dense(512 * 7 * 7, 2048), nn.ReLU(), nn.Dropout(0.5), nn.Dense(2048, 2048), nn.ReLU(), nn.Conv2d(in_channels=2048, out_channels=2048, kernel_size=1,padding=0,has_bias=True, bias_init='zeros') ) 上述代码报错 ValueError: For primitive[Conv2D], the x shape size must be equal to 4, but got 2. 原因是什么
时间: 2024-02-15 19:26:18 浏览: 129
这个错误是因为 `Conv2d` 要求输入张量必须是 4 维的,而你的输入张量只有 2 维。也就是说,你需要将输入张量的形状从 (batch_size, num_features) 转换为 (batch_size, num_channels, height, width)。你可以使用 `reshape` 函数将输入张量的形状转换为 4 维,然后再传递给 `Conv2d`。
相关问题
YOLOv5中要加from keras.layers import Dropoutmodel.add(Dense(64, activation='relu'))model.add(Dropout(0.5))这段代码是要加在什么地方
在YOLOv5的代码中,这段代码应该加在模型定义的过程中,具体来说是在定义分类器(classifier)之前。常见的模型定义代码如下:
```
import torch.nn as nn
class YOLOv5(nn.Module):
def __init__(self, ...):
super(YOLOv5, self).__init__()
...
self.classifier = nn.Sequential(
nn.Linear(1024, 256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(256, num_classes)
)
def forward(self, x):
...
x = self.classifier(x)
return x
```
其中 `...` 表示省略的部分,具体定义可参考YOLOv5的源代码。在这个模型定义中,`self.classifier` 是一个包含了多个线性层和激活函数的序列(Sequential)模块,用来对提取到的特征进行分类。在这个模块中,可以加入 `Dropout` 层来进行正则化,代码如下:
```
import torch.nn as nn
class YOLOv5(nn.Module):
def __init__(self, ...):
super(YOLOv5, self).__init__()
...
self.classifier = nn.Sequential(
nn.Linear(1024, 256),
nn.ReLU(),
nn.Dropout(0.5), # 在这里加入 Dropout 层
nn.Linear(256, num_classes)
)
def forward(self, x):
...
x = self.classifier(x)
return x
```
这样,在模型的训练过程中,每次前向传播时,Dropout 层都会随机地将一部分神经元输出置为0来达到正则化的效果。
我有一个来自十个类别各100个共1000个的信号数据,每个数据有512个特征点,存储为一个(300,1,512)的torch.tensor张量,现在我想将其输入一个深度DenseNet网络训练分类模型用于分类这些类别,请使用pytorch实现
import torch.nn as nn
import torch.utils.data as Data
class DenseNet(nn.Module):
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_classes=10):
super(DenseNet, self).__init__()
# First convolution
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv1d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)),
('norm0', nn.BatchNorm1d(64)),
('relu0', nn.ReLU(inplace=True)),
('pool0', nn.MaxPool1d(kernel_size=3, stride=2, padding=1)),
]))
# Each denseblock
num_features = 64
for i, num_layers in enumerate(block_config):
block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
bn_size=4, growth_rate=growth_rate, drop_rate=0.2)
self.features.add_module('denseblock%d' % (i + 1), block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
self.features.add_module('transition%d' % (i + 1), trans)
num_features = num_features // 2
# Final batch norm
self.features.add_module('norm5', nn.BatchNorm1d(num_features))
# Linear layer
self.classifier = nn.Linear(num_features, num_classes)
# Initialization
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.adaptive_avg_pool1d(out, (1,))
out = torch.flatten(out, 1)
out = self.classifier(out)
return out
class _DenseBlock(nn.Sequential):
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
super(_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
self.add_module('denselayer%d' % (i + 1), layer)
class _DenseLayer(nn.Module):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(_DenseLayer, self).__init__()
self.norm1 = nn.BatchNorm1d(num_input_features)
self.relu1 = nn.ReLU(inplace=True)
self.conv1 = nn.Conv1d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)
self.norm2 = nn.BatchNorm1d(bn_size * growth_rate)
self.relu2 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)
self.drop_rate = drop_rate
def forward(self, x):
new_features = self.conv1(self.relu1(self.norm1(x)))
new_features = self.conv2(self.relu2(self.norm2(new_features)))
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return torch.cat([x, new_features], 1)
class _Transition(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_Transition, self).__init__()
self.norm = nn.BatchNorm1d(num_input_features)
self.relu = nn.ReLU(inplace=True)
self.conv = nn.Conv1d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)
self.pool = nn.AvgPool1d(kernel_size=2, stride=2)
def forward(self, x):
x = self.conv(self.relu(self.norm(x)))
x = self.pool(x)
return x
# Load the data
X = # Your data
Y = # Your labels
dataset = Data.TensorDataset(X, Y)
dataloader = Data.DataLoader(dataset, batch_size=16, shuffle=True)
# Instantiate the model
model = DenseNet()
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
# Train the model
num_epochs = 10
for epoch in range(num_epochs):
for i, (x, y) in enumerate(dataloader):
# Forward pass
outputs = model(x)
# Compute loss
loss = criterion(outputs, y)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print statistics
if (i + 1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch + 1, num_epochs, i + 1, len(dataset) // 16, loss.item()))
阅读全文