安科瑞智能电表modbus-rtu采集数据报文示例

时间: 2023-07-12 12:32:30 浏览: 323
安科瑞智能电表使用 Modbus-RTU 通信协议进行数据采集,以下是一个可能的报文示例: ``` 01 03 00 00 00 0A C4 0B ``` 上述报文中,"01" 表示设备地址,"03" 表示读取多个保持寄存器的功能码,"00 00" 表示起始地址,"00 0A" 表示要读取的寄存器数量,"C4 0B" 表示校验码。 设备可能会响应以下报文: ``` 01 03 14 01 2C 00 12 34 56 78 9A BC DE F0 12 34 56 78 9A BC DE F0 0F 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 E5 0C ``` 上述报文中,"01" 表示设备地址,"03" 表示读取多个保持寄存器的功能码,"14" 表示要读取的数据字节数,"01 2C" 表示第一个保持寄存器的值,"12 34" 表示第二个保持寄存器的值,以此类推。校验码为 "E5 0C"。 需要注意的是,实际的报文格式可能会因为设备型号、通信配置等因素而有所不同。上述示例仅供参考。
相关问题

安科瑞智能电表采集数据报文示例

安科瑞智能电表采集数据报文示例可能会因为不同的通信协议而有所不同,以下是一种可能的示例: ```json { "meter_id": "123456789", "timestamp": "2022-01-01T12:00:00.000Z", "voltage": { "L1": 220.0, "L2": 220.5, "L3": 221.0 }, "current": { "L1": 5.0, "L2": 4.8, "L3": 4.9 }, "power": { "active": 3300.0, "reactive": 1500.0 }, "energy": { "active": 100000.0, "reactive": 50000.0 } } ``` 上述示例中,"meter_id" 表示电表编号,"timestamp" 表示数据采集时间,"voltage" 表示三相电压值,"current" 表示三相电流值,"power" 表示有功功率和无功功率值,"energy" 表示有功电能和无功电能值。这只是一种可能的示例,实际的数据格式可能会因为不同的应用场景而有所不同。

安科瑞电表java代码

### 回答1: 安科瑞电表是一种智能电表,具有数据采集、存储、计量、传输等功能。在使用Java语言编写安科瑞电表的代码时,我们可以按照以下步骤进行: 1. 导入所需的Java类库。首先,我们需要导入Java中用于串口通信的类库,以便与安科瑞电表进行通信。例如,可以导入RXTXComm库。 2. 建立与电表的串口连接。通过在Java代码中设置相应的串口参数(如波特率、数据位等),我们可以创建与安科瑞电表的串口连接。可以使用SerialPort类来实现这一连接。 3. 发送指令并接收电表数据。通过串口连接,我们可以向电表发送各种指令,例如读取电表的电流、电压等数据。使用OutputStream类将指令发送到串口,然后使用InputStream类接收电表返回的数据。根据安科瑞电表的通信协议,解析并处理接收到的数据。 4. 存储电表数据。将接收到的电表数据存储在合适的数据结构中,例如Java的数组、列表或对象等。根据需要,可以将数据存储在文件或数据库中。 5. 进行计量和数据处理。根据业务需求,可以对接收到的电表数据进行计量或数据处理。例如,可以计算电表的总电量、功率因数等。 6. 关闭串口连接。在完成与安科瑞电表的通信后,应关闭串口连接,释放资源。使用close()方法来关闭OutputStream和InputStream,并调用SerialPort的close()方法来关闭串口连接。 总之,通过上述步骤,可以实现对安科瑞电表的Java代码编写,以实现与电表的通信、数据采集、计量和数据处理等功能。具体实现时,需要根据安科瑞电表的通信协议和接口文档进行具体编码。 ### 回答2: 安科瑞电表是一款用于测量电力参数的电表,可以通过Java代码对其进行控制和读取数据。下面是一个简单的安科瑞电表的Java代码示例: ```java import java.io.IOException; import java.net.InetAddress; import java.net.Socket; public class AnkurayElectricMeter { private static final int PORT = 8000; // 电表通信端口号 public static void main(String[] args) { try { // 连接电表 Socket socket = new Socket(InetAddress.getLocalHost(), PORT); System.out.println("已连接到安科瑞电表"); // 发送指令获取电力参数 String command = "GET_DATA"; socket.getOutputStream().write(command.getBytes()); socket.getOutputStream().flush(); // 读取电力参数数据 byte[] buffer = new byte[1024]; int bytesRead = socket.getInputStream().read(buffer); String data = new String(buffer, 0, bytesRead); System.out.println("电力参数数据:" + data); // 关闭连接 socket.close(); } catch (IOException e) { e.printStackTrace(); } } } ``` 以上代码首先通过`Socket`类与安科瑞电表建立连接,并发送`GET_DATA`指令获取电力参数数据。然后从输入流中读取电力参数数据并打印输出,最后关闭连接。请注意,该示例代码仅用于演示连接和获取数据的基本流程,实际操作可能会涉及到更多的操作和处理。 此外,还可以根据具体需求使用安科瑞电表提供的其他指令和功能,例如设置电表参数、读取电能表读数等。具体的代码实现会根据具体的指令和功能而有所变化,请根据安科瑞电表的通信协议和文档编写相应的代码。 ### 回答3: 安科瑞电表是一种用于测量电能消耗的电表设备。编写一个基本的安科瑞电表的Java代码可以包括以下内容: 首先,我们需要定义一个名为ElectricMeter的类来表示电表。这个类可以包括以下属性: - currentReading:表示当前读数的变量。 - previousReading:表示上次读数的变量。 - unitPrice:表示每个单位电能的价格的变量。 接下来,我们需要定义ElectricMeter类的构造方法来初始化电表对象的属性。构造方法可以接收参数来设置初始读数和单价。 然后,我们需要定义以下方法来操作电表: - getCurrentReading():用于获取当前读数。 - getPreviousReading():用于获取上次读数。 - getUsage():计算并返回电能的使用量,即当前读数减去上次读数。 - getTotalCost():计算并返回总消费金额,使用量乘以单价。 - setCurrentReading(double reading):用于设置当前读数,并将该值保存到currentReading变量中。 - setPreviousReading(double reading):用于设置上次读数,并将该值保存到previousReading变量中。 - setUnitPrice(double price):用于设置单价,并将该值保存到unitPrice变量中。 最后,我们可以在一个测试类中创建ElectricMeter对象,并使用方法来设置和获取读数、单价,并计算电费使用量和总消费金额。 代码示例: ``` public class ElectricMeter { private double currentReading; private double previousReading; private double unitPrice; public ElectricMeter(double currentReading, double previousReading, double unitPrice) { this.currentReading = currentReading; this.previousReading = previousReading; this.unitPrice = unitPrice; } public double getCurrentReading() { return currentReading; } public double getPreviousReading() { return previousReading; } public double getUsage() { return currentReading - previousReading; } public double getTotalCost() { return getUsage() * unitPrice; } public void setCurrentReading(double reading) { currentReading = reading; } public void setPreviousReading(double reading) { previousReading = reading; } public void setUnitPrice(double price) { unitPrice = price; } } public class ElectricMeterTest { public static void main(String[] args) { ElectricMeter meter = new ElectricMeter(1000, 800, 0.5); System.out.println("当前读数:" + meter.getCurrentReading()); System.out.println("上次读数:" + meter.getPreviousReading()); System.out.println("使用量:" + meter.getUsage()); System.out.println("总消费金额:" + meter.getTotalCost()); meter.setCurrentReading(1200); meter.setPreviousReading(1000); meter.setUnitPrice(0.6); System.out.println("当前读数:" + meter.getCurrentReading()); System.out.println("上次读数:" + meter.getPreviousReading()); System.out.println("使用量:" + meter.getUsage()); System.out.println("总消费金额:" + meter.getTotalCost()); } } ``` 这段代码定义了一个ElectricMeter类,用于表示安科瑞电表,并提供了一些方法来操作电表的属性并计算电费消费。在测试类ElectricMeterTest中,创建了一个ElectricMeter对象并测试了设置和获取读数、单价以及计算使用量和总消费金额的功能。

相关推荐

whl
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。

最新推荐

recommend-type

光伏电站电力监控系统设计与选型方案

PZ系列直流检测仪表则适用于直流屏、太阳能供电等场景,可测量电压、电流、功率和电能,并提供RS-485通讯接口,支持Modbus-RTU协议,还可配置模拟量输出、继电器报警输出和开关量输入/输出。 在选型方案中,不同...
recommend-type

基于ACR电力质量分析仪的电能质量在线监测方案.doc

该系统还具备强大的数据采集处理能力,能实时和定时采集电参量,并生成直观的数据信息,如总系统功率、负荷最大值等。趋势曲线分析功能则帮助分析负荷运行状况和电气设备对信号的影响。报表管理系统可以自动生成实时...
recommend-type

lxml-5.0.1-cp37-cp37m-win32.whl

lxml 是一个用于 Python 的库,它提供了高效的 XML 和 HTML 解析以及搜索功能。它是基于 libxml2 和 libxslt 这两个强大的 C 语言库构建的,因此相比纯 Python 实现的解析器(如 xml.etree.ElementTree),lxml 在速度和功能上都更为强大。 主要特性 快速的解析和序列化:由于底层是 C 实现的,lxml 在解析和序列化 XML/HTML 文档时非常快速。 XPath 和 CSS 选择器:支持 XPath 和 CSS 选择器,这使得在文档中查找特定元素变得简单而强大。 清理和转换 HTML:lxml 提供了强大的工具来清理和转换不规范的 HTML,比如自动修正标签和属性。 ETree API:提供了类似于 ElementTree 的 API,但更加完善和强大。 命名空间支持:相比 ElementTree,lxml 对 XML 命名空间提供了更好的支持。
recommend-type

slim-0.5.8-py3-none-any.whl

whl软件包,直接pip install安装即可
recommend-type

【赠】新营销4.0:新营销,云时代(PDF).pdf

【赠】新营销4.0:新营销,云时代(PDF)
recommend-type

Vue实现iOS原生Picker组件:详细解析与实现思路

"Vue.js实现iOS原生Picker效果及实现思路解析" 在iOS应用中,Picker组件通常用于让用户从一系列选项中进行选择,例如日期、时间或者特定的值。Vue.js作为一个流行的前端框架,虽然原生不包含与iOS Picker完全相同的组件,但开发者可以通过自定义组件来实现类似的效果。本篇文章将详细介绍如何在Vue.js项目中创建一个模仿iOS原生Picker功能的组件,并分享实现这一功能的思路。 首先,为了创建这个组件,我们需要一个基本的DOM结构。示例代码中给出了一个基础的模板,包括一个外层容器`<div class="pd-select-item">`,以及两个列表元素`<ul class="pd-select-list">`和`<ul class="pd-select-wheel">`,分别用于显示选定项和可滚动的选择项。 ```html <template> <div class="pd-select-item"> <div class="pd-select-line"></div> <ul class="pd-select-list"> <li class="pd-select-list-item">1</li> </ul> <ul class="pd-select-wheel"> <li class="pd-select-wheel-item">1</li> </ul> </div> </template> ``` 接下来,我们定义组件的属性(props)。`data`属性是必需的,它应该是一个数组,包含了所有可供用户选择的选项。`type`属性默认为'cycle',可能用于区分不同类型的Picker组件,例如循环滚动或非循环滚动。`value`属性用于设置初始选中的值。 ```javascript props: { data: { type: Array, required: true }, type: { type: String, default: 'cycle' }, value: {} } ``` 为了实现Picker的垂直居中效果,我们需要设置CSS样式。`.pd-select-line`, `.pd-select-list` 和 `.pd-select-wheel` 都被设置为绝对定位,通过`transform: translateY(-50%)`使其在垂直方向上居中。`.pd-select-list` 使用`overflow:hidden`来隐藏超出可视区域的部分。 为了达到iOS Picker的3D滚动效果,`.pd-select-wheel` 设置了`transform-style: preserve-3d`,确保子元素在3D空间中保持其位置。`.pd-select-wheel-item` 的每个列表项都设置了`position:absolute`,并使用`backface-visibility:hidden`来优化3D变换的性能。 ```css .pd-select-line, .pd-select-list, .pd-select-wheel { position: absolute; left: 0; right: 0; top: 50%; transform: translateY(-50%); } .pd-select-list { overflow: hidden; } .pd-select-wheel { transform-style: preserve-3d; height: 30px; } .pd-select-wheel-item { white-space: nowrap; text-overflow: ellipsis; backface-visibility: hidden; position: absolute; top: 0px; width: 100%; overflow: hidden; } ``` 最后,为了使组件能够响应用户的滚动操作,我们需要监听触摸事件,更新选中项,并可能还需要处理滚动动画。这通常涉及到计算滚动位置,映射到数据数组,以及根据滚动方向调整可见项的位置。 总结来说,实现Vue.js中的iOS原生Picker效果,需要构建一个包含可滚动列表的自定义组件,通过CSS样式实现3D滚动效果,并通过JavaScript处理触摸事件来模拟Picker的行为。通过这种方式,开发者可以在Vue.js项目中创建出与iOS原生界面风格一致的用户交互体验。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【广度优先搜索】:Python面试中的系统化思维展现

![【广度优先搜索】:Python面试中的系统化思维展现](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20200611200432/Top-10-System-Design-Interview-Questions-and-Answers.png) # 1. 广度优先搜索(BFS)算法概述 广度优先搜索(Breadth-First Search, BFS)算法是图论中的一种基本算法,广泛应用于计算机科学和工程领域。它是对树或图进行遍历的一种方法,按照距离起点的远近逐层进行搜索,直到找到目标节点或遍历完所有可到达的节点。这种算法
recommend-type

nginx ubuntu离线安装

Nginx是一款开源的高性能Web服务器和反向代理服务器,常用于Linux系统,如Ubuntu。离线安装通常指在没有网络连接的情况下本地获取并配置软件包。以下是Nginx在Ubuntu上离线安装的基本步骤: 1. **下载Nginx包**: - 首先,你需要从Nginx官方网站下载适用于Ubuntu的二进制包。访问 https://nginx.org/en/download.html ,选择对应版本的`nginx`文件,比如`nginxxx.x.tar.gz`,将其保存到你的离线环境中。 2. **解压并移动文件**: 使用`tar`命令解压缩下载的文件: ```
recommend-type

Arduino蓝牙小车:参数调试与功能控制

本资源是一份基于Arduino Mega2560主控的蓝牙遥控小车程序代码,适用于Android设备通过蓝牙进行操控。该程序允许车辆实现运动、显示和测温等多种功能,具有较高的灵活性和实用性。 1. **蓝牙通信与模块操作** 在程序开始时,开发者提醒用户在上传代码前需将蓝牙模块的RX接口暂时拔掉,上传成功后再恢复连接。这可能是因为在调试过程中,需要确保串口通信的纯净性。程序通过Serial.begin()函数设置串口波特率为9600,这是常见的蓝牙通信速率,适合于手机等设备连接。 2. **电机控制参数调整** 代码中提到的"偏转角度需要根据场地不同进行调参数",表明程序设计为支持自定义参数,通过宏变量的形式,用户可以根据实际需求对小车的转向灵敏度进行个性化设置。例如,`#define left_forward_PIN4` 和 `#define right_forward_PIN2` 定义了左右轮的前进控制引脚,这些引脚的输出值范围是1-255,允许通过编程精确控制轮速。 3. **行驶方向控制** 小车的行驶方向通过改变特定引脚的高低电平来实现。例如,`void left_forward_PIN4` 和 `void left_back_PIN5` 分别控制左轮前进和后退,用户可以通过赋予高或低电平来指示小车的行驶方向。同时,右轮的控制方式类似。 4. **多种移动模式** 除了基本的前进和后退,程序还提供了原地左转、原地右转、右前、左前、左后和右后的控制函数,如`void turnLeftOrigin()` 等,增强了小车的机动性和操作多样性。 5. **主函数和循环结构** 主函数`void setup()`用于初始化硬件,包括串口通信和引脚配置。而`void loop()`则是一个无限循环,通过`void reve()`函数不断接收并处理蓝牙发送的指令,保持小车持续响应用户的控制命令。 6. **数据接收与解析** `void reve()`函数通过`Serial.parseInt()`读取蓝牙发送的数字值(7在示例中被提及),然后根据接收到的指令执行相应的移动命令,体现了程序的核心逻辑部分。 总结来说,这份蓝牙小车程序代码为开发人员提供了一个基础平台,通过调整参数和编写特定的控制函数,能够实现不同场景下的小车控制,具有较强的通用性和可扩展性。对于学习和实践Arduino与蓝牙通信的开发者来说,这是一个很好的学习和实践案例。