model = Sequential() #model.add(Embedding(500, embed_dim,input_length = test_X.shape[0])) model.add(LSTM(128, input_shape=(train_X.shape[1], train_X.shape[2]))) model.add(Dropout(0.3)) model.add(Dense(14)) model.add(LSTM(64, input_shape=(train_X.shape[1], train_X.shape[2]))) model.add(Dropout(0.3)) model.add(Dense(1)) model.compile(loss='mae', optimizer='adam')
时间: 2023-05-25 12:06:46 浏览: 180
"model = Sequential()" 是一个 Python 语言中用来创建深度学习模型的代码行。这里使用了 Keras 框架中的 Sequential() 函数来创建一个空白的模型,我们可以向其中添加层或者图层,构建具体的深度学习结构。
相关问题
# 编码器 def encoder(input_shape, vocab_size, latent_dim): model = tf.keras.models.Sequential([ tf.keras.layers.Embedding(vocab_size, 256, input_shape=input_shape, name="encoder_embedding"), tf.keras.layers.LSTM(latent_dim, name="encode_lstm"), ],name="encoder") return model # 解码器 def decoder(output_shape, vocab_size, latent_dim): model = tf.keras.models.Sequential([ tf.keras.layers.RepeatVector(output_shape[0], input_shape=output_shape, name="decoder_repeatvector"), tf.keras.layers.LSTM(latent_dim, return_sequences=True,name="decode_lstm"), tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(vocab_size, activation='softmax'), name="decoder_td"), ], name="decoder") return model # expected shape=(None, None, 12), found shape=(None, 12, 256) # 定义模型 def build_model(input_shape, output_shape, vocab_size, latent_dim): encoder_model = encoder(input_shape, vocab_size, latent_dim) decoder_model = decoder(output_shape, vocab_size, latent_dim) model = tf.keras.models.Sequential([encoder_model, decoder_model]) return model改正一下模型
根据您提供的代码,您需要将编码器模型的LSTM层的return_sequences参数设置为True,以便正确地将输出形状传递给解码器模型。同时,您还需要将解码器模型的RepeatVector层的输入形状设置为output_shape[1],而不是output_shape[0]。修改后的代码如下所示:
```
# 编码器
def encoder(input_shape, vocab_size, latent_dim):
model = tf.keras.models.Sequential([
tf.keras.layers.Embedding(vocab_size, 256, input_shape=input_shape, name="encoder_embedding"),
tf.keras.layers.LSTM(latent_dim, return_sequences=True, name="encode_lstm"),
], name="encoder")
return model
# 解码器
def decoder(output_shape, vocab_size, latent_dim):
model = tf.keras.models.Sequential([
tf.keras.layers.RepeatVector(output_shape[1], input_shape=(latent_dim,), name="decoder_repeatvector"),
tf.keras.layers.LSTM(latent_dim, return_sequences=True, name="decode_lstm"),
tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(vocab_size, activation='softmax'), name="decoder_td"),
], name="decoder")
return model
# 定义模型
def build_model(input_shape, output_shape, vocab_size, latent_dim):
encoder_model = encoder(input_shape, vocab_size, latent_dim)
decoder_model = decoder(output_shape, vocab_size, latent_dim)
model = tf.keras.models.Sequential([encoder_model, decoder_model])
return model
```
concat = concatenate([lstm_out1,lstm_out2]) model = Model(inputs=[input_data1,input_data2], outputs=concat) # 添加其他层 #model = Model(inputs=[input_data1, input_data2], outputs=concat) model.add(keras.layers.Embedding(input_dim=10000, output_dim=300, mask_zero=True)) model.add(keras.layers.Bidirectional(keras.layers.LSTM(units=32, return_sequences=True))) #model.add(SeqSelfAttention(attention_activation='sigmoid')) model.add(keras.layers.Dense(units=32)) model.add(keras.layers.Dense(units=5)) # 添加多步预测输出层 return model 产生如下错误 : File D:\lstnet_keras-master\lstm\LSTNet_Interface_a391.py:281 in LSTNetAttention model.add(keras.layers.Embedding(input_dim=10000, output_dim=300, mask_zero=True)) AttributeError: 'Model' object has no attribute 'add'
根据错误信息,您在添加其他层时,使用了已经编译过的 `Model` 对象,而不是新的 `Sequential` 对象。因此,您需要将 `Model` 对象替换为 `Sequential` 对象,然后再添加其他层。您可以尝试以下代码:
```
from keras.models import Sequential
from keras.layers import concatenate, Embedding, Bidirectional, LSTM, Dense
def LSTNetAttention():
# 定义第一个输入
input_data1 = Input(shape=(None,), dtype="int32")
lstm_out1 = Bidirectional(LSTM(units=32, return_sequences=True))(input_data1)
# 定义第二个输入
input_data2 = Input(shape=(None,), dtype="int32")
lstm_out2 = Bidirectional(LSTM(units=32, return_sequences=True))(input_data2)
# 合并两个LSTM层的输出
concat = concatenate([lstm_out1,lstm_out2])
# 定义模型
model = Sequential()
model.add(Embedding(input_dim=10000, output_dim=300, mask_zero=True))
model.add(Bidirectional(LSTM(units=32, return_sequences=True)))
#model.add(SeqSelfAttention(attention_activation='sigmoid'))
model.add(Dense(units=32))
model.add(Dense(units=5))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 返回模型
return model
```
这个函数使用了 `Sequential` 对象来定义模型。在这个对象上,您可以使用 `.add()` 方法添加其他层。此外,该函数还包含了编译模型的步骤,您可以根据自己的需要更改优化器和损失函数。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)