对,用python写出
时间: 2024-03-13 17:21:31 浏览: 49
基于Python算法实现
ChitGPT 的代码如下:
```python
import torch
import torch.nn.functional as F
class ChitGPT(torch.nn.Module):
def __init__(self, vocab_size, embedding_dim, n_head, n_layer, max_len):
super().__init__()
self.max_len = max_len
# embedding layer
self.token_embedding = torch.nn.Embedding(vocab_size, embedding_dim)
# transformer layers
self.transformer_layers = torch.nn.ModuleList([
torch.nn.TransformerEncoderLayer(d_model=embedding_dim, nhead=n_head)
for _ in range(n_layer)
])
# output layer
self.fc = torch.nn.Linear(embedding_dim, vocab_size)
def forward(self, x):
# x has shape (batch_size, sequence_length)
batch_size, sequence_length = x.shape
# generate mask for padding
mask = torch.zeros((sequence_length, sequence_length), dtype=torch.bool)
for i in range(sequence_length):
mask[i, :i+1] = True
# generate token embeddings
x = self.token_embedding(x)
# transpose to match transformer input shape
x = x.permute(1, 0, 2)
# apply transformer layers
for layer in self.transformer_layers:
x = layer(x, src_key_padding_mask=mask)
# transpose back to match output shape
x = x.permute(1, 0, 2)
# apply output layer
x = self.fc(x)
return x
```
这是一个基于 Transformer 的语言模型,可以用于生成文本。它包括一个嵌入层、多个 Transformer 编码器层和一个全连接层。在前向传递过程中,它将输入的标记嵌入到低维空间中,然后通过多个 Transformer 编码器层处理输入,最后通过全连接层生成输出。
阅读全文