python图神经网络实现对知识图谱部分实体分配权重算法实现
时间: 2023-07-29 13:10:37 浏览: 104
图神经网络课程python实现
下面是一个使用Python实现对知识图谱部分实体分配权重的算法实现:
```
import networkx as nx
import numpy as np
import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
# 构建知识图谱
G = nx.DiGraph()
G.add_edge('A', 'B')
G.add_edge('B', 'C')
G.add_edge('C', 'D')
G.add_edge('B', 'D')
G.add_edge('D', 'E')
# 构建实体嵌入和权重计算模型
class GCN(torch.nn.Module):
def __init__(self):
super(GCN, self).__init__()
self.conv1 = GCNConv(1, 16)
self.conv2 = GCNConv(16, 1)
def forward(self, x, edge_index):
x = F.relu(self.conv1(x, edge_index))
x = self.conv2(x, edge_index)
return x
# 计算实体的权重
def calc_entity_weight(G):
# 将知识图谱转化为PyTorch Geometric格式
edge_index = torch.tensor(list(G.edges)).t().contiguous()
x = torch.ones(len(G.nodes), 1)
# 构建GCN模型并进行实体嵌入学习
model = GCN()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
for epoch in range(200):
model.train()
optimizer.zero_grad()
out = model(x, edge_index)
loss = F.mse_loss(out, x)
loss.backward()
optimizer.step()
# 计算实体权重
with torch.no_grad():
weight = {}
for i, node in enumerate(G.nodes):
node_weight = float(model(torch.tensor([x[i]], dtype=torch.float32), edge_index))
weight[node] = node_weight
# 对实体权重进行归一化处理
weight_arr = np.array(list(weight.values()))
weight = dict(zip(weight.keys(), weight_arr / np.sum(weight_arr)))
return weight
# 对知识图谱部分实体分配权重
entity_weight = calc_entity_weight(G)
for node, weight in entity_weight.items():
if node in ['A', 'C', 'E']:
print(f"{node}的权重为{weight}")
```
该算法首先构建了一个简单的知识图谱,然后使用PyTorch Geometric构建了一个GCN模型,对知识图谱中的实体进行了嵌入学习,并计算了每个实体的权重。最后,对知识图谱中的部分实体,如'A', 'C', 'E'进行了权重分配,并输出了各自的权重。
阅读全文