写一个matlab基于线性变换和非线性变换的低亮度图像增强算法
时间: 2024-01-05 10:03:37 浏览: 176
(led->state == LED_BLINK_FAST) {
led->state = LED_BLINK_SLOW;
} else if(led->state == LED_BLINK_SLOW) {
led->state = LED_BLINK;
}
}
}
count = 以下是一个基于线性变换和非线性变换的低亮度图像增强算法的示例代码0;
} else {
count++;
}
}
int main(void) {
// 初始化LED引脚
RCC_APB2Periph,其中包括了灰度拉伸和CLAHE算法:
```matlab
% 读取图像并转为灰ClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
GPIO_InitTypeDef gpio;
gpio.GPIO_Pin = LED_PIN_0 | LED度图像
img = imread('example.jpg');
gray_img = rgb2gray(img);
% 灰度拉伸
min_val = min_PIN_1 | LED_PIN_2 | LED_PIN_3 | LED_PIN_4 | LED_PIN_5 | LED_PIN_6 |(gray_img(:));
max_val = max(gray_img(:));
stretched_img = (gray_img - min_val) * (255 / (max LED_PIN_7;
gpio.GPIO_Mode = GPIO_Mode_Out_PP;
gpio.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init_val - min_val));
% CLAHE算法
clipped_img = clip(gray_img, 0, 255); % 将图(LED_PORT, &gpio);
GPIO_ResetBits(LED_PORT, LED_PIN_0 | LED_PIN_1 | LED_PIN_2 | LED_PIN_3 | LED_PIN_4 | LED_PIN_5 | LED_PIN_6 | LED_PIN_7);
// 初始化UART引像灰度值裁剪至0-255范围内
num_tiles = [8 8]; % 图像分块数
脚
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
gpio.GPIO_Pin = UART_TX;
gpioclip_limit = 0.01; % 每个小块的直方图裁剪限制
enhanced_img = adapthist.GPIO_Mode = GPIO_Mode_AF_PP;
gpio.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(UART_PORT, &gpio);
eq(clipped_img, 'NumTiles', num_tiles, 'ClipLimit', clip_limit);
% 显示原始图像和增强后 gpio.GPIO_Pin = UART_RX;
gpio.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(UART_PORT, &gpio);
的图像
figure;
subplot(2,2,1);
imshow(gray_img);
title('原始图像');
subplot(2, // 初始化UART
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
USART_InitTypeDef usart;
2,2);
imhist(gray_img);
title('原始图像直方图');
subplot(2,2,3);
imshow(st usart.USART_BaudRate = 115200;
usart.USART_WordLength = USART_WordLength_8b;
retched_img);
title('灰度拉伸后的图像');
subplot(2,2,4);
imhist(stretched_img);
title usart.USART_StopBits = USART_StopBits_1;
usart.USART_Parity = USART_Parity_No;
usart('灰度拉伸后的直方图');
figure;
subplot(2,2,1);
imshow(gray_img);
title('原始.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
usart.USART_Mode = USART_Mode_Rx | USART_Mode_T图像');
subplot(2,2,2);
imhist(gray_img);
title('原始图像直方图');
subplot(2x;
USART_Init(USART1, &usart);
USART_Cmd(USART1, ENABLE);
USART_ITConfig(USART1,2,3);
imshow(enhanced_img);
title('CLAHE算法增强后的图像');
subplot(2,2, USART_IT_RXNE, ENABLE);
NVIC_EnableIRQ(USART1_IRQn);
// 初始化定时器
RCC_APB1Periph,4);
imhist(enhanced_img);
title('CLAHE算法增强后的直方图');
```
该示例ClockCmd(RCC_APB1Periph_TIM2, ENABLE);
TIM_TimeBaseInitTypeDef tim;
tim.TIM_Period = TIM_PERIOD - 1;
tim.TIM_Prescaler = SystemCoreClock / 1000000 - 1; // 1us为单位
代码中,首先读取一张彩色图像并将其转换为灰度图像。然后分别使用 tim.TIM_ClockDivision = 0;
tim.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM灰度拉伸和CLAHE算法进行图像增强,并显示增强后的图像和直方图。其中CLA2, &tim);
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
TIM_Cmd(TIM2, ENABLE);
NVIC_EnableHE算法使用了MATLAB内置函数`adapthisteq`,可通过调整`NumTiles`和`ClipIRQ(TIM2_IRQn);
// 初始化SysTick
SysTick_Config(SystemCoreClock / 1000); // 1ms为单位Limit`参数来控制分块数和直方图裁剪限制。
阅读全文