卷积神经网络目标检测技术
时间: 2023-06-14 08:07:48 浏览: 157
卷积神经网络(Convolutional Neural Network,CNN)在目标检测任务中的应用已经被广泛探讨。CNN 目标检测技术主要分为两大类:基于区域提取的方法和基于端到端的方法。
基于区域提取的方法将目标检测过程分为两步:首先对图像进行区域提取,然后对每个区域进行分类和回归。其中,R-CNN、Fast R-CNN、Faster R-CNN 和 Mask R-CNN 都是基于区域提取的方法。这些方法主要通过候选区域的生成方式不同来进行区分。
基于端到端的方法将目标检测过程看作一个整体,直接预测目标的位置和类别。YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector)就是典型的基于端到端的方法。这些方法主要通过使用卷积神经网络对整个图像进行处理,直接输出目标的位置和类别。
总体而言,卷积神经网络目标检测技术具有较高的检测准确率和较快的检测速度,已经成为目标检测领域的主流技术。
阅读全文