train_dataset=datasets.ImageFlolder(root=os.path.join(image_path,’train’),transform=data_trainsform[‘train’])
时间: 2023-12-06 18:05:24 浏览: 89
我理解您的问题是关于代码片段的意思。根据代码片段,您正在使用PyTorch中的ImageFolder类创建一个名为train_dataset的变量。该类将从一个名为“train”的根文件夹中读取图像,并应用名为“data_transform [ 'train']” 的转换。请注意,这里的“image_path”变量需要在代码中定义。
相关问题
train_dataset = datasets.ImageFolder(root=os.path.join(image_path), transform=data_transform['train'])作用是什么
这行代码的作用是创建一个名为`train_dataset`的数据集对象,其中包含从`image_path`目录加载的图像数据及其对应的标签。具体来说,`datasets.ImageFolder`类是PyTorch中用于处理图像分类数据集的类之一,它期望数据集目录的组织方式为:每个类别的图像数据放在一个单独的子目录中,子目录的名称即为该类别的名称。`transform=data_transform['train']`参数指定了对图像数据进行的预处理操作,这里使用了名为`data_transform`的字典对象,并取其`train`键对应的变换函数。这个预处理函数会对图像进行一系列的变换,比如随机裁剪、随机水平翻转、归一化等。
为每句代码做注释:flower_list = train_dataset.class_to_idx cla_dict = dict((val, key) for key, val in flower_list.items()) json_str = json.dumps(cla_dict, indent=4) with open('class_indices.json', 'w') as json_file: json_file.write(json_str) batch_size = 16 nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) print('Using {} dataloader workers every process'.format(nw)) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0) validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"]) val_num = len(validate_dataset) validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=batch_size, shuffle=False, num_workers=0) print("using {} images for training, {} images for validation.".format(train_num, val_num))
# 定义一个名为 flower_list 的变量,存储了数据集中所有类别与其对应的编号
flower_list = train_dataset.class_to_idx
# 定义一个名为 cla_dict 的变量,存储了类别与其对应的编号的键值对,并且将其反转
cla_dict = dict((val, key) for key, val in flower_list.items())
# 将 cla_dict 转换为 JSON 格式的字符串,并添加缩进
json_str = json.dumps(cla_dict, indent=4)
# 将 JSON 格式的字符串写入到名为 class_indices.json 的文件中
with open('class_indices.json', 'w') as json_file:
json_file.write(json_str)
# 定义一个名为 batch_size 的变量,表示每个批次所包含的图片数量
batch_size = 16
# 定义一个名为 nw 的变量,表示每个进程使用的数据加载器的数量,取值为 CPU 核心数量和 batch_size 中的最小值
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
# 输出使用了多少个数据加载器线程
print('Using {} dataloader workers every process'.format(nw))
# 使用 train_dataset 创建一个数据加载器 train_loader,每个批次包含 batch_size 张图片,打乱顺序,使用 0 个数据加载器线程
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
# 使用 validate_dataset 创建一个数据加载器 validate_loader,每个批次包含 batch_size 张图片,不打乱顺序,使用 0 个数据加载器线程
validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"])
val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=batch_size, shuffle=False, num_workers=0)
# 输出训练集和验证集中图片的数量
print("using {} images for training, {} images for validation.".format(train_num, val_num))
阅读全文