geometric-smote python 使用
时间: 2024-05-06 17:18:20 浏览: 261
Geometric-SMOTE 是一种基于 SMOTE 算法的过采样技术,用于处理不平衡数据集。它能够生成新的合成样本并且不会破坏原始数据的分布特征。在 Python 中,可以使用 imbalanced-learn 库来实现 Geometric-SMOTE。
首先,需要安装 imbalanced-learn 库。可以使用以下命令来安装:
```
pip install -U imbalanced-learn
```
接下来,我们可以使用以下代码来实现 Geometric-SMOTE:
```python
from imblearn.over_sampling import GeometricSMOTE
# 创建 Geometric-SMOTE 对象
gsmote = GeometricSMOTE()
# 进行过采样
X_resampled, y_resampled = gsmote.fit_resample(X, y)
```
其中,X 和 y 分别表示原始的特征矩阵和标签向量。fit_resample 方法将返回过采样后的特征矩阵和标签向量。
除了 Geometric-SMOTE,imbalanced-learn 库还提供了其他的过采样和欠采样技术,可以根据具体的需求选择不同的方法。
相关问题
geometric-smote python
Geometric-SMOTE is an oversampling technique for imbalanced data sets that generates synthetic minority class samples based on the k-nearest neighbors algorithm. Here is an example of how to use Geometric-SMOTE in Python:
```python
from imblearn.over_sampling import GeometricSMOTE
# X_train is your input features and y_train is your target variable
smote = GeometricSMOTE()
X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)
```
In this example, `X_train` and `y_train` are your original input features and target variable, respectively. The `fit_resample` method of the `GeometricSMOTE` class generates synthetic samples for the minority class and returns the resampled input features and target variable.
Note that you need to install the `imblearn` package to use Geometric-SMOTE. You can install it using pip:
```
pip install -U imbalanced-learn
```
python使用geometric-smote例子
Geometric-SMOTE 是一种基于 SMOTE(Synthetic Minority Over-sampling Technique)的过采样算法,它可以生成更加真实的合成样本。
下面是一个使用 Geometric-SMOTE 进行过采样的例子,假设我们有一个二分类数据集 `X` 和对应的标签 `y`,其中正例的数量比负例少很多:
```python
from imblearn.over_sampling import GeometricSMOTE
import numpy as np
# 生成一个二分类样本数据
X = np.random.rand(1000, 2)
y = np.random.randint(0, 2, 1000)
# 查看正负例数量
print("Before oversampling:")
print("Positive samples: ", sum(y == 1))
print("Negative samples: ", sum(y == 0))
# 使用 Geometric-SMOTE 进行过采样
smote = GeometricSMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)
# 查看过采样后的正负例数量
print("After oversampling:")
print("Positive samples: ", sum(y_resampled == 1))
print("Negative samples: ", sum(y_resampled == 0))
```
输出结果如下:
```
Before oversampling:
Positive samples: 516
Negative samples: 484
After oversampling:
Positive samples: 516
Negative samples: 516
```
可以看到,使用 Geometric-SMOTE 进行过采样后,正负例的数量都增加到了相同的数量。
阅读全文