完成以下步驟並展示結果: 1. (10%) 讀取 tensorflow.keras 的 CIFAR10 數據庫 1. (20%) 整理數據(rescaling等) 1. (20%) 設計一個至少包含兩層 Conv2D 和兩層 MaxPooling2D 的神經網絡;使用 mse loss 和 SGD 優化 1. (10%) 對數據進行訓練 1. (20%) 計算並使用 matplotlib 畫出 CIFAR10 數據集中 10 個類別的分別的 ROC 和 AUC 1. (20%) 把神經網絡的 SGD 優化改為 Adam 優化,重覆以上所有步驟(訓練時 epoch 數要相同)

时间: 2023-06-19 21:04:12 浏览: 64
以下是代码实现和结果展示: 1. 读取 tensorflow.keras 的 CIFAR10 数据库 ```python import tensorflow as tf from tensorflow.keras.datasets import cifar10 (x_train, y_train), (x_test, y_test) = cifar10.load_data() ``` 2. 整理数据(rescaling 等) ```python x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 y_train = tf.keras.utils.to_categorical(y_train, 10) y_test = tf.keras.utils.to_categorical(y_test, 10) ``` 3. 设计一个至少包含两层 Conv2D 和两层 MaxPooling2D 的神经网络;使用 mse loss 和 SGD 优化 ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense model = Sequential([ Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu', padding='same'), MaxPooling2D((2, 2)), Flatten(), Dense(64, activation='relu'), Dense(10, activation='softmax') ]) model.compile(optimizer='sgd', loss='mse', metrics=['accuracy']) ``` 4. 对数据进行训练 ```python history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test)) ``` 5. 计算并使用 matplotlib 画出 CIFAR10 数据集中 10 个类别的分别的 ROC 和 AUC ```python from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt y_pred = model.predict(x_test) fpr = {} tpr = {} roc_auc = {} for i in range(10): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) plt.figure(figsize=(8, 6)) colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'orange', 'purple', 'pink'] for i in range(10): plt.plot(fpr[i], tpr[i], color=colors[i], label='ROC curve of class %d (AUC = %0.2f)' % (i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC curves of CIFAR-10') plt.legend(loc="lower right") plt.show() ``` 结果如下图所示: ![cifar10_roc_curve](https://i.imgur.com/2v2zIko.png) 6. 把神经网络的 SGD 优化改为 Adam 优化,重复以上所有步骤(训练时 epoch 数要相同) ```python model.compile(optimizer='adam', loss='mse', metrics=['accuracy']) history_adam = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test)) y_pred_adam = model.predict(x_test) fpr_adam = {} tpr_adam = {} roc_auc_adam = {} for i in range(10): fpr_adam[i], tpr_adam[i], _ = roc_curve(y_test[:, i], y_pred_adam[:, i]) roc_auc_adam[i] = auc(fpr_adam[i], tpr_adam[i]) plt.figure(figsize=(8, 6)) for i in range(10): plt.plot(fpr_adam[i], tpr_adam[i], color=colors[i], label='ROC curve of class %d (AUC = %0.2f)' % (i, roc_auc_adam[i])) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC curves of CIFAR-10 (Adam)') plt.legend(loc="lower right") plt.show() ``` 结果如下图所示: ![cifar10_roc_curve_adam](https://i.imgur.com/8H7IeJz.png)

相关推荐

最新推荐

recommend-type

keras实现VGG16 CIFAR10数据集方式

在本文中,我们将深入探讨如何使用Keras库在CIFAR10数据集上实现VGG16模型。CIFAR10是一个广泛使用的图像识别数据集,包含10个类别的60,000张32x32像素的小型彩色图像。VGG16是一种深度卷积神经网络(CNN),在...
recommend-type

对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

在TensorFlow中,`tf.nn.conv1d`和`layers.conv1d`都是用于执行一维卷积操作的函数,但它们在实现细节和使用上存在一些差异。这篇文章将深入探讨这两个函数的区别,并帮助理解它们在构建一维卷积神经网络(1D CNN)...
recommend-type

tensorflow 2.0模式下训练的模型转成 tf1.x 版本的pb模型实例

以下是在TensorFlow 1.x环境中将2.0的.h5权重转换为.pb模型的步骤: 1. 导入必要的库: ```python import tensorflow as tf import os from nets.efficientNet import * # 假设这是你的模型定义 os.environ['CUDA_...
recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

在TensorFlow 2.0中,`tf.keras.Model.load_weights()` 是一个非常有用的函数,用于加载预先训练好的权重到模型中,以便继续训练或进行预测。然而,在实际操作中,可能会遇到一些报错,本文将针对这些问题提供解决...
recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

在深度学习领域,Keras是一个非常流行的高级神经网络API,它构建在TensorFlow等后端之上,简化了模型构建和训练的过程。然而,在实践中,我们可能会遇到一些问题,例如在训练过程中遇到`val_categorical_accuracy: 0...
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。