用C语言实现随机森林算法
时间: 2023-10-23 20:12:06 浏览: 340
随机森林是一种集成学习的方法,其本质是基于多个决策树的集成算法。在随机森林中,每个决策树都是由随机选取的样本和随机选取的特征组成。以下是用C语言实现随机森林算法的基本步骤:
1. 导入数据集:将数据集读入到程序中。
2. 随机选取样本和特征:从数据集中随机选取一部分样本和特征,用于构建每个决策树。
3. 构建决策树:根据选取的样本和特征,构建一棵决策树。
4. 重复步骤2-3:重复步骤2-3,构建多棵决策树。
5. 预测:对于新的样本,将其输入所有构建的决策树中,最终的预测结果为所有决策树的预测结果的平均值或多数表决。
以下是一个简单的用C语言实现随机森林算法的例子:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAX_FEATURES 20
#define MAX_SAMPLES 1000
#define MAX_TREES 100
typedef struct {
double feature[MAX_FEATURES];
int label;
} Sample;
typedef struct {
int feature_index;
double threshold;
} Split;
typedef struct Node {
Split split;
struct Node* left_child;
struct Node* right_child;
int label;
} Node;
typedef struct {
Node* root;
} Tree;
typedef struct {
Tree trees[MAX_TREES];
int num_trees;
} RandomForest;
Sample samples[MAX_SAMPLES];
int num_samples;
int num_features;
int num_classes;
int get_majority_class(Sample* samples, int num_samples) {
int class_counts[num_classes];
for (int i = 0; i < num_classes; i++) {
class_counts[i] = 0;
}
for (int i = 0; i < num_samples; i++) {
class_counts[samples[i].label]++;
}
int majority_class = 0;
int max_count = 0;
for (int i = 0; i < num_classes; i++) {
if (class_counts[i] > max_count) {
majority_class = i;
max_count = class_counts[i];
}
}
return majority_class;
}
double get_gini_index(Sample* samples, int num_samples) {
int class_counts[num_classes];
for (int i = 0; i < num_classes; i++) {
class_counts[i] = 0;
}
for (int i = 0; i < num_samples; i++) {
class_counts[samples[i].label]++;
}
double gini_index = 1.0;
for (int i = 0; i < num_classes; i++) {
double p_i = (double) class_counts[i] / num_samples;
gini_index -= p_i * p_i;
}
return gini_index;
}
Split get_best_split(Sample* samples, int num_samples, int* selected_features, int num_selected_features) {
double min_gini_index = INFINITY;
Split best_split;
for (int i = 0; i < num_selected_features; i++) {
int feature_index = selected_features[i];
double feature_values[num_samples];
for (int j = 0; j < num_samples; j++) {
feature_values[j] = samples[j].feature[feature_index];
}
for (int j = 0; j < num_samples - 1; j++) {
for (int k = j + 1; k < num_samples; k++) {
if (feature_values[j] > feature_values[k]) {
double temp = feature_values[j];
feature_values[j] = feature_values[k];
feature_values[k] = temp;
}
}
}
for (int j = 0; j < num_samples - 1; j++) {
double threshold = (feature_values[j] + feature_values[j + 1]) / 2.0;
Sample left_samples[num_samples];
Sample right_samples[num_samples];
int num_left_samples = 0;
int num_right_samples = 0;
for (int k = 0; k < num_samples; k++) {
if (samples[k].feature[feature_index] <= threshold) {
left_samples[num_left_samples++] = samples[k];
} else {
right_samples[num_right_samples++] = samples[k];
}
}
double gini_index = ((double) num_left_samples / num_samples) * get_gini_index(left_samples, num_left_samples) +
((double) num_right_samples / num_samples) * get_gini_index(right_samples, num_right_samples);
if (gini_index < min_gini_index) {
min_gini_index = gini_index;
best_split.feature_index = feature_index;
best_split.threshold = threshold;
}
}
}
return best_split;
}
Node* build_decision_tree(Sample* samples, int num_samples, int* selected_features, int num_selected_features) {
Node* node = (Node*) malloc(sizeof(Node));
if (num_samples == 0) {
node->label = get_majority_class(samples, num_samples);
return node;
}
int num_classes_in_node = 0;
int classes_in_node[num_classes];
for (int i = 0; i < num_classes; i++) {
classes_in_node[i] = 0;
}
for (int i = 0; i < num_samples; i++) {
if (classes_in_node[samples[i].label] == 0) {
num_classes_in_node++;
}
classes_in_node[samples[i].label]++;
}
if (num_classes_in_node == 1) {
node->label = samples[0].label;
return node;
}
if (num_selected_features == 0) {
node->label = get_majority_class(samples, num_samples);
return node;
}
Split split = get_best_split(samples, num_samples, selected_features, num_selected_features);
node->split = split;
Sample left_samples[num_samples];
Sample right_samples[num_samples];
int num_left_samples = 0;
int num_right_samples = 0;
for (int i = 0; i < num_samples; i++) {
if (samples[i].feature[split.feature_index] <= split.threshold) {
left_samples[num_left_samples++] = samples[i];
} else {
right_samples[num_right_samples++] = samples[i];
}
}
int new_selected_features[num_selected_features - 1];
int new_num_selected_features = 0;
for (int i = 0; i < num_selected_features; i++) {
if (selected_features[i] != split.feature_index) {
new_selected_features[new_num_selected_features++] = selected_features[i];
}
}
node->left_child = build_decision_tree(left_samples, num_left_samples, new_selected_features, new_num_selected_features);
node->right_child = build_decision_tree(right_samples, num_right_samples, new_selected_features, new_num_selected_features);
return node;
}
void train_random_forest(RandomForest* random_forest, int num_trees, int num_selected_features) {
int selected_features[num_features];
for (int i = 0; i < num_features; i++) {
selected_features[i] = i;
}
for (int i = 0; i < num_trees; i++) {
int selected_samples[num_samples];
for (int j = 0; j < num_samples; j++) {
selected_samples[j] = rand() % num_samples;
}
Sample selected_samples_array[num_samples];
for (int j = 0; j < num_samples; j++) {
selected_samples_array[j] = samples[selected_samples[j]];
}
int selected_features_array[num_features];
for (int j = 0; j < num_features; j++) {
selected_features_array[j] = selected_features[rand() % num_features];
}
random_forest->trees[i].root = build_decision_tree(selected_samples_array, num_samples, selected_features_array, num_selected_features);
}
random_forest->num_trees = num_trees;
}
int predict_random_forest(RandomForest* random_forest, Sample sample) {
int class_counts[num_classes];
for (int i = 0; i < num_classes; i++) {
class_counts[i] = 0;
}
for (int i = 0; i < random_forest->num_trees; i++) {
Node* node = random_forest->trees[i].root;
while (node->left_child != NULL && node->right_child != NULL) {
if (sample.feature[node->split.feature_index] <= node->split.threshold) {
node = node->left_child;
} else {
node = node->right_child;
}
}
class_counts[node->label]++;
}
int majority_class = 0;
int max_count = 0;
for (int i = 0; i < num_classes; i++) {
if (class_counts[i] > max_count) {
majority_class = i;
max_count = class_counts[i];
}
}
return majority_class;
}
int main() {
// 读入数据集
// ...
// 设置参数
num_features = 10;
num_classes = 2;
num_samples = 100;
// 训练随机森林
int num_trees = 50;
int num_selected_features = 3;
RandomForest random_forest;
train_random_forest(&random_forest, num_trees, num_selected_features);
// 预测
Sample sample;
// ...
int predicted_class = predict_random_forest(&random_forest, sample);
return 0;
}
```
以上代码仅为示例,实际应用中还需要进行参数调优、交叉验证等操作,以提高模型的性能。
阅读全文