用opencv 读入给定的coin04.mp4, 编写代码分析每帧视频,从视频画面中提取出每枚硬币的位置,然后在它旁边标出这是第几枚硬币的设计思路

时间: 2023-06-12 10:07:39 浏览: 173
1. 导入相应的库和模块,包括OpenCV、NumPy等。 2. 使用OpenCV中的VideoCapture模块读入coin04.mp4视频文件。 3. 循环遍历每一帧图像,对每一帧图像进行处理。 4. 对于每一帧图像,进行图像处理,包括灰度化、高斯模糊、边缘检测等操作,以便更好地区分硬币的轮廓。 5. 对处理后的图像进行轮廓检测,使用findContours函数找到所有的轮廓,并将每个轮廓的位置和大小记录下来。 6. 遍历每个轮廓,判断其大小是否达到硬币大小的要求,如果达到要求,则将其标记为硬币,并记录硬币的位置和大小。 7. 将每个硬币的位置和大小以及编号输出到图像的相应位置上,以便更好地展示硬币信息。 8. 将处理后的图像输出,或者实时展示。 代码实现如下所示: ```python import cv2 import numpy as np cap = cv2.VideoCapture('coin04.mp4') # 硬币大小的阈值 MIN_RADIUS = 20 MAX_RADIUS = 100 # 设置字体和字体大小 font = cv2.FONT_HERSHEY_SIMPLEX fontScale = 1 thickness = 2 # 记录硬币编号 coin_num = 0 while True: ret, frame = cap.read() # 读取一帧图像 if not ret: break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 灰度化 blurred = cv2.GaussianBlur(gray, (11, 11), 0) # 高斯模糊 edged = cv2.Canny(blurred, 30, 150) # 边缘检测 contours, hierarchy = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 轮廓检测 for c in contours: area = cv2.contourArea(c) # 计算轮廓面积 if MIN_RADIUS**2 < area/np.pi < MAX_RADIUS**2: # 判断是否为硬币 coin_num += 1 (x, y), radius = cv2.minEnclosingCircle(c) # 获取硬币位置和大小 center = (int(x), int(y)) radius = int(radius) cv2.circle(frame, center, radius, (0, 255, 0), 2) # 在图像上绘制硬币轮廓 cv2.putText(frame, f'Coin {coin_num}', (int(x)+radius, int(y)), font, fontScale, (255, 0, 0), thickness, cv2.LINE_AA) # 标记硬币编号 cv2.imshow('frame', frame) # 展示处理后的图像 if cv2.waitKey(1) & 0xFF == ord('q'): # 按q退出 break cap.release() cv2.destroyAllWindows() ``` 运行以上代码,可以得到处理后的视频,每个硬币的位置和编号都已经标记在了图像上。

相关推荐

最新推荐

recommend-type

java使用OpenCV从视频文件中获取帧

Java使用OpenCV从视频文件中获取帧是指使用Java语言和OpenCV库从视频文件中提取图像帧的过程。本文将详细介绍如何使用Java和OpenCV从视频文件中获取帧,并提供了具体的代码实例。 OpenCV是计算机视觉和机器学习的...
recommend-type

python如何实现从视频中提取每秒图片

在Python编程中,从视频中提取每秒图片是一项常见的任务,特别是在计算机视觉和图像处理领域。这个过程涉及到读取视频文件、处理每一帧并将其保存为单独的图像。在这个场景下,我们可以使用OpenCV库,它是一个强大的...
recommend-type

python使用opencv按一定间隔截取视频帧

在Python中,利用OpenCV库可以轻松实现对视频帧的处理,包括按一定间隔截取视频帧并保存为图片。OpenCV(Open Source Computer Vision Library)是一个强大的计算机视觉库,最初由Intel开发,现由它背后的全球开发者...
recommend-type

使用python-opencv读取视频,计算视频总帧数及FPS的实现

在这个场景中,我们将探讨如何使用OpenCV来读取视频,并计算视频的总帧数以及FPS(Frames Per Second,每秒帧数)。这在视频分析、处理或算法开发中是非常常见的需求。 首先,我们来看如何计算视频的总帧数。以下是...
recommend-type

JavaCV实现获取视频每帧并保存

在本文中,我们将详细介绍如何使用JavaCV实现获取视频每帧并保存。 标题:JavaCV实现获取视频每帧并保存 描述:主要为大家详细介绍了JavaCV实现获取视频每帧并保存,具有一定的参考价值,感兴趣的小伙伴们可以参考...
recommend-type

C语言快速排序算法的实现与应用

资源摘要信息: "C语言实现quickSort.rar" 知识点概述: 本文档提供了一个使用C语言编写的快速排序算法(quickSort)的实现。快速排序是一种高效的排序算法,它使用分治法策略来对一个序列进行排序。该算法由C. A. R. Hoare在1960年提出,其基本思想是:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 知识点详解: 1. 快速排序算法原理: 快速排序的基本操作是通过一个划分(partition)操作将数据分为独立的两部分,其中一部分的所有数据都比另一部分的所有数据要小,然后再递归地对这两部分数据分别进行快速排序,以达到整个序列有序。 2. 快速排序的步骤: - 选择基准值(pivot):从数列中选取一个元素作为基准值。 - 划分操作:重新排列数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆放在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。 - 递归排序子序列:递归地将小于基准值元素的子序列和大于基准值元素的子序列排序。 3. 快速排序的C语言实现: - 定义一个函数用于交换元素。 - 定义一个主函数quickSort,用于开始排序。 - 实现划分函数partition,该函数负责找到基准值的正确位置并返回这个位置的索引。 - 在quickSort函数中,使用递归调用对子数组进行排序。 4. C语言中的函数指针和递归: - 在快速排序的实现中,可以使用函数指针来传递划分函数,以适应不同的划分策略。 - 递归是实现快速排序的关键技术,理解递归的调用机制和返回值对理解快速排序的过程非常重要。 5. 快速排序的性能分析: - 平均时间复杂度为O(nlogn),最坏情况下时间复杂度为O(n^2)。 - 快速排序的空间复杂度为O(logn),因为它是一个递归过程,需要一个栈来存储递归的调用信息。 6. 快速排序的优点和缺点: - 优点:快速排序在大多数情况下都能达到比其他排序算法更好的性能,尤其是在数据量较大时。 - 缺点:在最坏情况下,快速排序会退化到冒泡排序的效率,即O(n^2)。 7. 快速排序与其他排序算法的比较: - 快速排序与冒泡排序、插入排序、归并排序、堆排序等算法相比,在随机数据下的平均性能往往更优。 - 快速排序不适合链表这种非顺序存储的数据结构,因为其随机访问的特性是排序效率的关键。 8. 快速排序的实际应用: - 快速排序因其高效率被广泛应用于各种数据处理场景,例如数据库管理系统、文件系统等。 - 在C语言中,快速排序可以用于对结构体数组、链表等复杂数据结构进行排序。 总结: 通过对“C语言实现quickSort.rar”文件的内容学习,我们可以深入理解快速排序算法的设计原理和C语言实现方式。这不仅有助于提高编程技能,还能让我们在遇到需要高效排序的问题时,能够更加从容不迫地选择和应用快速排序算法。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

ElementTree性能优化指南:如何将XML处理速度提升至极限

![ElementTree](https://blog.finxter.com/wp-content/uploads/2022/12/image-124.png) # 1. ElementTree的基本介绍与应用 ## 1.1 ElementTree简介 ElementTree是Python标准库中的XML处理模块,提供了一套完整的工具来创建、修改、解析XML数据。相比其他XML库,ElementTree具有轻量级和易用性的特点,使其成为处理XML数据的首选库。 ## 1.2 ElementTree的应用场景 ElementTree广泛应用于数据交换、配置文件处理、网页内容抓取等场景。例如
recommend-type

包含了简单的drop源和drop目标程序的完整代码,为了可以简单的访问这些文件,你仅仅需要输入下面的命令:

包含简单drop操作的源和目标程序通常涉及到数据传输、清理或者是文件管理。这里提供一个简化的Python示例,使用`shutil`库来进行文件删除操作: ```python import shutil # 定义源文件路径 source_file = "path/to/source/file.txt" # 定义目标目录(如果不存在则创建) target_directory = "path/to/target/directory" if not os.path.exists(target_directory): os.makedirs(target_directory) # 简单的
recommend-type

KityFormula 编辑器压缩包功能解析

资源摘要信息:"kityformula-editor.zip是一个压缩文件,其中包含了kityformula-editor的相关文件。kityformula-editor是百度团队开发的一款网页版数学公式编辑器,其功能类似于LaTeX编辑器,可以在网页上快速编辑和渲染数学公式。kityformula-editor的主要特点是轻量级,能够高效地加载和运行,不需要依赖任何复杂的库或框架。此外,它还支持多种输入方式,如鼠标点击、键盘快捷键等,用户可以根据自己的习惯选择输入方式。kityformula-editor的编辑器界面简洁明了,易于使用,即使是第一次接触的用户也能迅速上手。它还提供了丰富的功能,如公式高亮、自动补全、历史记录等,大大提高了公式的编辑效率。此外,kityformula-editor还支持导出公式为图片或SVG格式,方便用户在各种场合使用。总的来说,kityformula-editor是一款功能强大、操作简便的数学公式编辑工具,非常适合需要在网页上展示数学公式的场景。" 知识点: 1. kityformula-editor是什么:kityformula-editor是由百度团队开发的一款网页版数学公式编辑器,它的功能类似于LaTeX编辑器,可以在网页上快速编辑和渲染数学公式。 2. kityformula-editor的特点:kityformula-editor的主要特点是轻量级,它能够高效地加载和运行,不需要依赖任何复杂的库或框架。此外,它还支持多种输入方式,如鼠标点击、键盘快捷键等,用户可以根据自己的习惯选择输入方式。kityformula-editor的编辑器界面简洁明了,易于使用,即使是第一次接触的用户也能迅速上手。 3. kityformula-editor的功能:kityformula-editor提供了丰富的功能,如公式高亮、自动补全、历史记录等,大大提高了公式的编辑效率。此外,它还支持导出公式为图片或SVG格式,方便用户在各种场合使用。 4. kityformula-editor的使用场景:由于kityformula-editor是基于网页的,因此它非常适合需要在网页上展示数学公式的场景,例如在线教育、科研报告、技术博客等。 5. kityformula-editor的优势:相比于传统的LaTeX编辑器,kityformula-editor的优势在于它的轻量级和易用性。它不需要用户有深厚的LaTeX知识,也无需安装复杂的编辑环境,只需要一个浏览器就可以进行公式的编辑和展示。 6. kityformula-editor的发展前景:随着在线教育和科研的普及,对于一款轻量级且功能强大的数学公式编辑器的需求将会越来越大。因此,kityformula-editor有着广阔的市场前景和发展空间。