时序预测pytorch
时间: 2023-09-24 13:09:15 浏览: 88
基于pytorch实现的时间序列预测训练框架,各个部分模块化,方便修改模型 包含时间序列预测模型、训练、验证、测试
5星 · 资源好评率100%
时序预测是指基于历史数据来预测未来时间点的数值或趋势。在PyTorch中,可以使用神经网络模型进行时序预测。以下是一个简单的PyTorch时序预测的示例代码:
```python
import torch
import torch.nn as nn
# 准备数据
data = torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0])
lookback = 3
input_size = 1
output_size = 1
x = torch.zeros(len(data) - lookback, lookback, input_size)
y = torch.zeros(len(data) - lookback, output_size)
for i in range(len(data) - lookback):
x[i] = data[i:i+lookback].view(-1, 1)
y[i] = data[i+lookback:i+lookback+output_size].view(-1, 1)
# 定义模型
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTM, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x):
output, _ = self.lstm(x)
output = self.linear(output[:, -1])
return output
model = LSTM(input_size, 16, output_size)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
y_pred = model(x)
loss = criterion(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# 预测未来值
with torch.no_grad():
future = 5
pred = data[-lookback:].view(-1, 1)
for i in range(future):
input = pred[-lookback:].view(1, lookback, input_size)
output = model(input)
pred = torch.cat((pred, output.view(-1, 1)), dim=0)
print('Predicted future values:', pred[lookback:])
```
在这个示例中,我们使用了一个LSTM模型进行时序预测。首先,我们将历史数据拆分成输入和输出,然后定义LSTM模型,损失函数和优化器。接下来,我们训练模型并预测未来值。
阅读全文