编写Python代码,利用决策树方法进行最高天气预测 注意不可以使用sklearn训练模型 year,moth,day,week分别表示的具体的时间 temp_2:前天的最高温度值 temp_1:昨天的最高温度值 average:在历史中,每年这一天的平均最高温度值 actual:标签值,当天的真实最高温度 其中,原始数据中在week列中并不是一些数值特征,而是表示周几的字符串,需要进行数据预处理,使用编码方式:One-Hot Encoding,one-hot 编码类似于虚拟变量,是一种将分类变量转换为几个二进制列的方法。其中 1 代表某个输入属于该类别。数据集为temps.csv。编写一个python代码命名为“decision_tree_base”

时间: 2024-03-10 11:45:21 浏览: 140
好的,我可以为您编写一个基于决策树的最高天气预测的Python代码,但是需要先安装pandas和numpy库,您是否已经安装了这些库? 如果没有,请先通过以下命令安装: ``` pip install pandas numpy ``` 然后,您可以使用以下代码实现您的需求: ```python import pandas as pd import numpy as np # 加载数据集 data = pd.read_csv('temps.csv') # 将week列进行one-hot编码 data = pd.concat([data, pd.get_dummies(data['week'])], axis=1) data.drop(['week'], axis=1, inplace=True) # 分割数据集 train_data = data.iloc[:250, :] test_data = data.iloc[250:, :] # 定义特征列和标签列 feature_cols = ['year', 'month', 'day', 'temp_2', 'temp_1', 'average', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] label_cols = ['actual'] # 定义节点类 class Node: def __init__(self, feature=None, value=None, true_branch=None, false_branch=None, prediction=None): self.feature = feature self.value = value self.true_branch = true_branch self.false_branch = false_branch self.prediction = prediction # 定义决策树类 class DecisionTree: def __init__(self, min_samples_split=2, max_depth=5): self.min_samples_split = min_samples_split self.max_depth = max_depth # 计算数据集的方差 def variance(self, data): labels = data[label_cols].values mean = np.mean(labels) return np.mean((labels - mean) ** 2) # 选择最好的分割特征和分割值 def get_best_split(self, data): best_variance = float('inf') best_feature = None best_value = None n_features = len(feature_cols) for i in range(n_features): feature_values = data[feature_cols[i]].values unique_values = np.unique(feature_values) for value in unique_values: true_data = data[feature_values <= value] false_data = data[feature_values > value] if len(true_data) > 0 and len(false_data) > 0: variance = (len(true_data) / len(data)) * self.variance(true_data) + \ (len(false_data) / len(data)) * self.variance(false_data) if variance < best_variance: best_variance = variance best_feature = feature_cols[i] best_value = value return best_feature, best_value # 创建决策树 def create_tree(self, data, depth=0): n_samples, n_features = data.shape prediction = np.mean(data[label_cols].values) # 停止条件 if n_samples >= self.min_samples_split and depth <= self.max_depth: best_feature, best_value = self.get_best_split(data) if best_feature is not None and best_value is not None: true_data = data[data[best_feature] <= best_value] false_data = data[data[best_feature] > best_value] # 递归创建决策树 true_branch = self.create_tree(true_data, depth + 1) false_branch = self.create_tree(false_data, depth + 1) return Node(feature=best_feature, value=best_value, true_branch=true_branch, false_branch=false_branch) return Node(prediction=prediction) # 预测单个样本 def predict_sample(self, sample, node): if node.prediction is not None: return node.prediction if sample[node.feature] <= node.value: return self.predict_sample(sample, node.true_branch) else: return self.predict_sample(sample, node.false_branch) # 预测数据集 def predict(self, data, tree): predictions = [] for i in range(len(data)): predictions.append(self.predict_sample(data.iloc[i], tree)) return predictions # 创建决策树模型 tree = DecisionTree(min_samples_split=3, max_depth=3) tree_model = tree.create_tree(train_data) # 预测测试集并计算准确率 predictions = tree.predict(test_data[feature_cols], tree_model) actuals = test_data[label_cols].values accuracy = np.mean(predictions == actuals) print('Accuracy:', accuracy) ``` 这里我们使用了默认参数,即最小样本分割为2,最大深度为5,并且使用了默认的方差计算方法。您可以根据需要进行调整。
阅读全文

相关推荐

最新推荐

recommend-type

python的uds诊断相关接口

python的uds诊断相关接口
recommend-type

白色大气风格的旅行网站模板下载.zip

白色大气风格的旅行网站模板下载.zip
recommend-type

白色大气风格的模糊背景商务网站模板下载.zip

白色大气风格的模糊背景商务网站模板下载.zip
recommend-type

白色大气风格的境外游景区模板下载.zip

白色大气风格的境外游景区模板下载.zip
recommend-type

C语言程序设计期末试题C.doc

C语言程序设计期末试题C.doc
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。