遗传算法matlab程序实现
时间: 2023-10-04 18:13:40 浏览: 119
用MATLAB实现遗传算法程序.zip_matlab 遗传算法_遗传算法 _遗传算法 matlab_遗传算法 数值_遗传算法ma
以下是一个简单的遗传算法Matlab程序实现:
1. 初始化种群:生成一组随机的个体,作为初始的种群。
2. 评估适应度:对于每个个体,计算其适应度值,并按照适应度值从高到低进行排序。
3. 选择操作:根据个体的适应度值,选择适应度高的个体。
4. 交叉操作:对于选择的个体,采用交叉操作进行基因的交换,生成新的个体。
5. 变异操作:对于新生成的个体,进行变异操作,以增加种群的多样性。
6. 重复步骤2-5,直到达到预设的停止条件。
以下是一个简单的遗传算法Matlab程序实现的代码:
% 遗传算法Matlab程序实现
% 初始化种群
pop_size = 10; % 种群大小
chrom_size = 10; % 每个个体的基因长度
pop = randi([0,1],pop_size,chrom_size); % 生成随机的个体
max_gen = 100; % 最大迭代次数
gen = 1; % 当前迭代次数
while gen <= max_gen
% 评估适应度
fitness = sum(pop,2); % 计算每个个体的适应度值
[fitness,index] = sort(fitness,'descend'); % 按照适应度值从高到低进行排序
pop = pop(index,:); % 根据排序结果重新排列个体
% 选择操作
select_size = round(pop_size/2); % 选择的个体数量
select_pop = pop(1:select_size,:); % 选择适应度高的个体
% 交叉操作
cross_rate = 0.8; % 交叉概率
cross_pop = select_pop; % 交叉后的个体
for i = 1:2:select_size
if rand < cross_rate % 如果满足交叉概率
cross_point = randi([1,chrom_size-1]); % 随机选择交叉点
cross_pop(i,:) = [select_pop(i,1:cross_point),select_pop(i+1,cross_point+1:end)];
cross_pop(i+1,:) = [select_pop(i+1,1:cross_point),select_pop(i,cross_point+1:end)];
end
end
% 变异操作
mut_rate = 0.01; % 变异概率
mut_pop = cross_pop; % 变异后的个体
for i = 1:select_size
for j = 1:chrom_size
if rand < mut_rate % 如果满足变异概率
mut_pop(i,j) = 1 - mut_pop(i,j); % 变异
end
end
end
% 更新种群
pop = mut_pop;
gen = gen + 1; % 迭代次数加1
end
% 输出结果
disp('最终的种群为:');
disp(pop);
disp('最优个体为:');
disp(pop(1,:));
disp('最优适应度为:');
disp(fitness(1));
阅读全文