kaggle的共享单车数据集怎么建立神经网络模型,写出详细的代码和注释
时间: 2024-03-03 16:51:31 浏览: 109
bikesharing.zip
好的,首先我们需要明确一下任务,共享单车数据集是一个回归问题,我们需要根据数据预测出单车的租借数量。
接下来,我们需要做一些数据预处理,包括读取数据、特征工程、数据归一化等。具体代码如下:
```python
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# 读取数据
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
# 特征工程
def feature_engineering(data):
# 分离日期时间
data['date'] = data.datetime.apply(lambda x: x.split()[0])
data['hour'] = data.datetime.apply(lambda x: x.split()[1].split(':')[0])
data['weekday'] = data.date.apply(lambda dateString: datetime.strptime(dateString, '%Y-%m-%d').weekday())
data['month'] = data.date.apply(lambda dateString: datetime.strptime(dateString, '%Y-%m-%d').month)
data['season'] = data.season.map({1: 'Spring', 2: 'Summer', 3: 'Fall', 4: 'Winter'})
data['weather'] = data.weather.map({1: ' Clear + Few clouds + Partly cloudy + Partly cloudy',
2: ' Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist',
3: ' Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds',
4: ' Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog '})
# 删除不需要的列
data = data.drop(['datetime'], axis=1)
return data
train_data = feature_engineering(train_data)
test_data = feature_engineering(test_data)
# 数据归一化
scaler = MinMaxScaler()
train_data[['temp', 'atemp', 'humidity', 'windspeed']] = scaler.fit_transform(train_data[['temp', 'atemp', 'humidity', 'windspeed']])
test_data[['temp', 'atemp', 'humidity', 'windspeed']] = scaler.transform(test_data[['temp', 'atemp', 'humidity', 'windspeed']])
```
接下来,我们需要构建神经网络模型。我们使用Keras来建立模型,具体代码如下:
```python
from keras.models import Sequential
from keras.layers import Dense, Dropout
# 构建模型
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=12))
model.add(Dropout(0.2))
model.add(Dense(units=64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(units=1))
# 编译模型
model.compile(loss='mse', optimizer='adam')
# 训练模型
model.fit(train_data.iloc[:, :-1], train_data.iloc[:, -1], epochs=100, batch_size=32)
```
最后,我们使用训练好的模型对测试集进行预测并生成提交文件,具体代码如下:
```python
# 预测测试集
predictions = model.predict(test_data)
# 生成提交文件
submission = pd.DataFrame({
'datetime': pd.read_csv('test.csv')['datetime'],
'count': [max(0, x) for x in predictions]
})
submission.to_csv('submission.csv', index=False)
```
以上就是建立神经网络模型的完整代码,希望对你有所帮助!
阅读全文