软注意力机制复杂超长版代码
时间: 2023-07-01 13:26:36 浏览: 142
软注意力机制的代码可以比较复杂,以下是一个超长版的示例代码:
```python
import torch
import torch.nn as nn
class SoftAttention(nn.Module):
def __init__(self, hidden_size, max_len):
super(SoftAttention, self).__init__()
self.hidden_size = hidden_size
self.max_len = max_len
self.softmax = nn.Softmax(dim=1)
self.attn = nn.Linear(self.hidden_size * 2, self.max_len)
def forward(self, encoder_outputs, hidden):
"""
:param encoder_outputs: shape=[batch_size, seq_len, hidden_size]
:param hidden: shape=[batch_size, hidden_size]
:return: shape=[batch_size, hidden_size]
"""
seq_len = encoder_outputs.size(1)
# Repeat hidden state seq_len times
hidden = hidden.unsqueeze(1).repeat(1, seq_len, 1)
# Concatenate hidden state with encoder outputs
energy = torch.cat((hidden, encoder_outputs), dim=2)
# Apply linear layer and softmax
attention_scores = self.attn(energy)
attention_scores = attention_scores.transpose(1, 2).contiguous()
attention_scores = attention_scores.view(-1, seq_len)
attention_weights = self.softmax(attention_scores)
# Compute weighted sum of encoder outputs
context_vector = torch.bmm(attention_weights.unsqueeze(1), encoder_outputs)
context_vector = context_vector.squeeze(1)
return context_vector
```
该代码实现了一个带有软注意力机制的 PyTorch 模型。在这个模型中,我们先将隐藏状态和编码器输出连接在一起,然后将结果通过一个线性层,得到注意力分数。接着,我们使用 softmax 函数将注意力分数转换为注意力权重。最后,我们将注意力权重与编码器输出进行加权求和,得到上下文向量。
阅读全文