帮我用python写一个用TCN进行多输入单输出预测的代码
时间: 2023-12-18 07:05:17 浏览: 89
好的,以下是一个使用TCN进行多输入单输出预测的Python代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
class MultiInputDataset(Dataset):
def __init__(self, x1, x2, y):
self.x1 = x1
self.x2 = x2
self.y = y
def __len__(self):
return len(self.y)
def __getitem__(self, idx):
return self.x1[idx], self.x2[idx], self.y[idx]
class TCN(nn.Module):
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
super(TCN, self).__init__()
self.tcn = nn.Sequential(
nn.Conv1d(num_inputs, num_channels, kernel_size),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout),
nn.Conv1d(num_channels, num_channels, kernel_size),
nn.BatchNorm1d(num_channels),
nn.ReLU(),
nn.Dropout(dropout)
)
self.linear = nn.Linear(num_channels, 1)
def forward(self, x1, x2):
x = torch.cat((x1, x2), dim=1)
x = self.tcn(x.transpose(1, 2)).transpose(1, 2)
x = self.linear(x[:, :, -1])
return x
# Generate some example data
x1 = torch.randn(100, 5, 10) # 100 samples, 5 features, 10 time steps
x2 = torch.randn(100, 3, 10) # 100 samples, 3 features, 10 time steps
y = torch.randn(100, 1) # 100 samples, 1 target value
# Create a dataset and dataloader
dataset = MultiInputDataset(x1, x2, y)
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
# Create a TCN model
model = TCN(8, 16)
# Define the loss function and optimizer
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Train the model
for epoch in range(10):
running_loss = 0.0
for i, (x1_batch, x2_batch, y_batch) in enumerate(dataloader):
optimizer.zero_grad()
y_pred = model(x1_batch, x2_batch)
loss = criterion(y_pred, y_batch)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 10))
running_loss = 0.0
```
这段代码实现了一个使用TCN进行多输入单输出预测的模型。其中,MultiInputDataset用于将多个输入数据组合成一个数据集,TCN定义了一个简单的TCN模型,可以接收多个输入数据。在训练过程中,我们使用MSE损失函数和Adam优化器来进行优化。
阅读全文