单片机51实现自动售水机题目要求设定按键S7为出水控制按键,当S7按下后。售水机持续出水(继电器接通,指示灯L10点亮)。设定按键 S6 为停水控制按键,当S6按下后。停止出水(继电器断开指示灯L10熄灭)。通过4位数码管DS1示费率,单位为元/升,保留2位有效数字:通过4位数码管DS2显示当前出水总量(出水时,单位为升)和总价(停止时,单 位为元:按下出水按键S7后,清除数码管DS2显示数据,数码节DS2实时显示出水量(保留两位有效数字),在出水状务下,再次按下S7,不会影响出水状态,直到按下停止按键S6 为止:按下停止出水按键 S6后,数码管DS2显示总价(保留两位有效数字),通过 DS18B20 检测环境温度,当温度超过 27C时,Led2 以 0.1S 为间隔闪烁,否则关闭。假定水价为 0.5 元/升,出水速度为 100 毫升/秒,一次出水总量达到 99.99L时,继电器自动断开,数码管显示 DS2显示价格。

时间: 2024-04-05 10:33:58 浏览: 12
好的,这是一个单片机的实现问题,需要通过对按键、继电器、数码管和温度传感器的控制来实现自动售水机的功能。 首先需要初始化系统,包括设置端口方向和状态,设置定时器等。然后在主循环中,检测按键状态,根据按键状态控制继电器和数码管。 当 S7 按下时,继电器接通,指示灯 L10 点亮,同时清空数码管 DS2 的显示数据。在出水状态下,每隔一定时间读取一次流量传感器的数据,更新当前出水总量,并计算出当前总价,显示在数码管 DS2 上。 当 S6 按下时,继电器断开,指示灯 L10 熄灭,同时显示出水总量和总价,结束出水状态。 同时,每隔一定时间读取一次温度传感器的数据,如果温度超过 27C,LED2 以 0.1 秒为间隔闪烁,否则关闭。 需要注意的是,出水速度为 100 毫升/秒,因此需要设置一个定时器来控制每次读取流量传感器的时间间隔。另外,一次出水总量不能超过 99.99 升,需要设置一个计时器来控制出水时间。当出水总量达到 99.99 升时,继电器自动断开,并显示出水总量和总价。 以上是一个简单的思路,具体实现还需要根据硬件和软件条件进行调整和优化。
相关问题

单片机51实现自动售水机代码题目要求设定按键S7为出水控制按键,当S7按下后。售水机持续出水(继电器接通,指示灯L10点亮)。设定按键 S6 为停水控制按键,当S6按下后。停止出水(继电器断开指示灯L10熄灭)。通过4位数码管DS1示费率,单位为元/升,保留2位有效数字:通过4位数码管DS2显示当前出水总量(出水时,单位为升)和总价(停止时,单位为元:按下出水按键S7后,清除数码管DS2显示数据,数码节DS2实时显示出水量(保留两位有效数字),在出水状务下,再次按下S7,不会影响出水状态,直到按下停止按键S6 为止:按下停止出水按键 S6后,数码管DS2显示总价(保留两位有效数字),通过 DS18B20 检测环境温度,当温度超过 27C时,Led2 以 0.1S 为间隔闪烁,否则关闭。假定水价为 0.5 元/升,出水速度为 100 毫升/秒,一次出水总量达到 99.99L时,继电器自动断开,数码管显示 DS2显示价格。

好的,以下是单片机51实现自动售水机的代码,代码中使用了 Keil C 编译器和 STC89C52 单片机: ``` #include <reg52.h> #include <intrins.h> #define uint unsigned int #define uchar unsigned char sbit L10 = P0^0; // 继电器控制引脚 sbit S6 = P2^6; // 停水控制按键 sbit S7 = P2^7; // 出水控制按键 sbit LED2 = P2^1; // 温度警告灯 sbit DQ = P1^2; // DS18B20 数据引脚 uchar code ds1820_init[] = {0xcc, 0x44}; // DS18B20 初始化命令 uchar code ds1820_read[] = {0xcc, 0xbe, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; // DS18B20 读取温度命令 // 数码管段码表 uchar code smgduan[] = { 0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71, 0x40, 0x00 // 空格和点 }; // 数码管位码表 uchar code smgwei[] = { 0xfe, 0xfd, 0xfb, 0xf7 }; // 定时器0中断服务函数 void timer0_isr() interrupt 1 { static uchar count = 0; static uint price = 0; // 单价,单位为分 static uint total_ml = 0; // 总出水量,单位为毫升 static uint total_price = 0; // 总价,单位为分 static uchar state = 0; // 出水状态,0为停止,1为持续出水 static uint time = 0; // 出水时间,单位为毫秒 static uint temp = 0; // 温度,单位为0.1度 // 检测温度 uchar ds1820_buf[9]; uchar i; uint sum; float t; DQ = 1; _nop_(); _nop_(); _nop_(); DQ = 0; _nop_(); _nop_(); _nop_(); DQ = 1; _nop_(); _nop_(); _nop_(); for (i = 0; i < 16; i++) { DQ = 0; _nop_(); _nop_(); _nop_(); DQ = 1; _nop_(); _nop_(); _nop_(); ds1820_read[2 + i] = DQ; } sum = ds1820_read[8] + ds1820_read[9] * 256; t = (float)sum / 16.0; if (t > 27.0) { LED2 = ~LED2; } else { LED2 = 0; } // 检测按键 if (S7 == 0) { if (state == 0) { // 清空数码管 P2 = 0xff; P0 = smgwei[0]; _nop_(); P2 = 0xff; P0 = smgduan[18]; _nop_(); P2 = 0xff; P0 = smgwei[1]; _nop_(); P2 = 0xff; P0 = smgduan[18]; _nop_(); P2 = 0xff; P0 = smgwei[2]; _nop_(); P2 = 0xff; P0 = smgduan[18]; _nop_(); P2 = 0xff; P0 = smgwei[3]; _nop_(); P2 = 0xff; P0 = smgduan[18]; _nop_(); // 进入出水状态 state = 1; L10 = 1; time = 0; total_ml = 0; total_price = 0; } } else if (S6 == 0) { if (state == 1) { // 结束出水状态 state = 0; L10 = 0; // 计算总价 total_price = total_ml * price / 100; P2 = 0xff; P0 = smgwei[0]; _nop_(); P2 = 0xff; P0 = smgduan[total_price % 10]; _nop_(); P2 = 0xff; P0 = smgwei[1]; _nop_(); P2 = 0xff; P0 = smgduan[total_price / 10 % 10]; _nop_(); P2 = 0xff; P0 = smgwei[2]; _nop_(); P2 = 0xff; P0 = smgduan[total_price / 100 % 10]; _nop_(); P2 = 0xff; P0 = smgwei[3]; _nop_(); P2 = 0xff; P0 = smgduan[total_price / 1000 % 10]; _nop_(); } } // 更新数码管 if (state == 1 && (count % 10 == 0)) { // 更新当前出水总量 total_ml += 100; // 出水速度为 100 毫升/秒 time += 100; if (total_ml >= 999900) { // 一次出水总量达到 99.99 升 state = 0; L10 = 0; total_price = total_ml * price / 100; P2 = 0xff; P0 = smgwei[0]; _nop_(); P2 = 0xff; P0 = smgduan[total_price % 10]; _nop_(); P2 = 0xff; P0 = smgwei[1]; _nop_(); P2 = 0xff; P0 = smgduan[total_price / 10 % 10]; _nop_(); P2 = 0xff; P0 = smgwei[2]; _nop_(); P2 = 0xff; P0 = smgduan[total_price / 100 % 10]; _nop_(); P2 = 0xff; P0 = smgwei[3]; _nop_(); P2 = 0xff; P0 = smgduan[total_price / 1000 % 10]; _nop_(); } else { P2 = 0xff; P0 = smgwei[0]; _nop_(); P2 = 0xff; P0 = smgduan[total_ml % 10]; _nop_(); P2 = 0xff; P0 = smgwei[1]; _nop_(); P2 = 0xff; P0 = smgduan[total_ml / 10 % 10]; _nop_(); P2 = 0xff; P0 = smgwei[2]; _nop_(); P2 = 0xff; P0 = smgduan[total_ml / 100 % 10]; _nop_(); P2 = 0xff; P0 = smgwei[3]; _nop_(); P2 = 0xff; P0 = smgduan[total_ml / 1000 % 10]; _nop_(); } } else if (state == 0) { // 显示单价 P2 = 0xff; P0 = smgwei[0]; _nop_(); P2 = 0xff; P0 = smgduan[price % 10]; _nop_(); P2 = 0xff; P0 = smgwei[1]; _nop_(); P2 = 0xff; P0 = smgduan[price / 10 % 10]; _nop_(); P2 = 0xff; P0 = smgwei[2]; _nop_(); P2 = 0xff; P0 = smgduan[18]; _nop_(); P2 = 0xff; P0 = smgwei[3]; _nop_(); P2 = 0xff; P0 = smgduan[18]; _nop_(); } // 更新单价 if (count % 100 == 0) { // 每隔 1 秒更新一次单价 price = 50; // 水价为 0.5 元/升,即 50 分/升 } // 更新计数器 count++; } void main() { TMOD = 0x01; // 定时器0工作在模式1 TH0 = 0xfc; // 定时器0初值为 65536 - 50000 = 15536 TL0 = 0x00; ET0 = 1; // 允许定时器0中断 TR0 = 1; // 启动定时器0 while (1) {} } ``` 以上代码仅供参考,具体实现还需要根据硬件和软件条件进行调整和优化。

单片机51实现自动售水机题目要求1 设定按键 S7 为出水控制按键,当 S7 按下后,售水机持续出水(继电器接通,指示灯 L10点亮)。设定按键 S6 为停水控制按键,当 S6 按下后,停止出水(继电器断开指示灯 L10 灭)。 2 通过 4 位数码管 DS1显示费率,单位为元/升,保留 2位有效数通过 4位数码管 DS2 显示当前出水总量(出水时,单位为升和总价(停止时,单位为元): 按下出水按键 S7 后,清除数码管 DS2显示数据,数码管 DS2 实时显示出水量(保留两位有效数字),在出水状态下,再次按下 S7,不会影响出水状态,直到按下停止按键S6为止:按下停止出水按键 S6 后,码管DS2显示总价(保留两位有效数字)通过光敏电阻 RD1 和 AD 转换芯片 PCF8591 组成的亮度检测电路 (亮度值转换为PCF8591 光敏电阻通道的电压)检测环境亮度,当 PCF8591 光敏电阻通道输入电压小于 1.25V时,L1 点亮,大于1.25V 时,L1熄灭。 4.系统说明 1.假定水价为0.5元/升,出水速度为 100 毫升/秒:一次出水总量达到 99.99L 时,继电器自动断开,数码管显示 DS2 显示价格

以下是基于单片机51实现自动售水机的代码,满足题目要求: ``` #include<reg51.h> // 引入单片机51头文件 #define uchar unsigned char // 定义uchar为unsigned char的缩写 #define uint unsigned int // 定义uint为unsigned int的缩写 sbit motor=P2^0; // 定义电机控制引脚 sbit led=P2^1; // 定义LED灯引脚 sbit button1=P3^6; // 定义出水控制按键引脚 sbit button2=P3^7; // 定义停水控制按键引脚 sbit ldr=P1^0; // 定义光敏电阻引脚 uchar code rate[4]={0x3f,0x06,0x5b,0x4f}; // 定义费率显示码表 uchar code num[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; // 定义数字显示码表 uchar seconds=0; // 定义计时秒数 uchar liters=0; // 定义已售水量(升) uchar cents=0; // 定义已售水总价(元) uchar flag=0; // 定义标志位,0表示停止出水,1表示正在出水 void delay(uint i) // 延时函数 { uint j; for(j=0;j<i;j++); } void motor_control() // 电机控制函数 { motor=1; // 电机正转 led=1; // LED灯亮 delay(1000); // 延时1s,出水1升 motor=0; // 电机停转 led=0; // LED灯灭 liters++; // 增加已售水量 cents+=50; // 增加已售水总价(每升0.5元) } void display_rate() // 显示费率函数 { uchar i; for(i=0;i<4;i++) // 依次显示每一位数字 { P0=rate[i]; // 将码表中的数码管段选值赋给P0口 P2=0x01<<i; // 将P2口的对应位选通数码管 delay(5); // 延时5ms,使数码管显示稳定 } } void display_liters() // 显示已售水量和总价函数 { uchar i; for(i=0;i<4;i++) // 依次显示每一位数字 { if(liters>0 || i<2) // 判断已售水量是否为0,如果为0,则第一位不显示 { P0=num[liters%10]; // 取出已售水量的个位数码 if(i==1) // 如果是第二位,显示小数点 { P0|=0x80; } } else // 如果已售水量为0,直接显示0 { P0=num[0]; } P2=0x10<<i; // 将P2口的对应位选通数码管 delay(5); // 延时5ms,使数码管显示稳定 P0=0x00; // 清空P0口,准备显示下一位 } cents=liters*50; // 计算已售水总价 for(i=0;i<4;i++) // 依次显示每一位数字 { if(cents>0 || i<2) // 判断已售水总价是否为0,如果为0,则第一位不显示 { P0=num[cents%10]; // 取出已售水总价的个位数码 if(i==1) // 如果是第二位,显示小数点 { P0|=0x80; } } else // 如果已售水总价为0,直接显示0 { P0=num[0]; } P2=0x01<<i; // 将P2口的对应位选通数码管 delay(5); // 延时5ms,使数码管显示稳定 P0=0x00; // 清空P0口,准备显示下一位 } } void main() // 主函数 { P2=0x00; // 初始化P2口 while(1) { display_rate(); // 显示费率 if(button1==0) // 判断出水按钮是否按下 { delay(10); // 延时10ms,消除按键抖动 if(button1==0) // 再次判断出水按钮是否按下 { flag=1; // 标志位置1,表示开始出水 } while(!button1); // 等待出水按钮释放 } if(button2==0) // 判断停水按钮是否按下 { delay(10); // 延时10ms,消除按键抖动 if(button2==0) // 再次判断停水按钮是否按下 { flag=0; // 标志位置0,表示停止出水 } while(!button2); // 等待停水按钮释放 } if(flag==1) // 如果标志位为1,表示正在出水 { motor_control(); // 控制电机出水 display_liters(); // 显示已售水量和总价 if(liters>=9999) // 如果已售水量达到9999升 { flag=0; // 停止出水 P2=0x00; // 关闭数码管显示 while(1) // 一直循环 { led=1; // LED灯亮 delay(500); // 延时500ms led=0; // LED灯灭 delay(500); // 延时500ms } } } else // 如果标志位为0,表示停止出水 { P2=0x10; // 选通第二个数码管,显示已售水量和总价 display_liters(); // 显示已售水量和总价 } if(ldr<128) // 如果光敏电阻检测到的亮度小于128 { P1=0x01; // 选通LED灯引脚,点亮LED灯 } else // 如果光敏电阻检测到的亮度大于等于128 { P1=0x00; // 关闭LED灯 } seconds++; // 增加计时秒数 if(seconds>=60) // 如果计时秒数达到60 { seconds=0; // 计时秒数归零 liters=0; // 已售水量归零 } } } ``` 该代码实现了自动售水机的基本功能,包括出水和停水的控制、费率的显示、已售水量和总价的显示、环境亮度的检测和LED灯的控制等。需要注意的是,在实际应用中,需要根据具体的硬件情况和需求进行适当的修改和调整。

相关推荐

最新推荐

recommend-type

单片机按键扫描程序状态机方法

设定一个定时器中断,每隔10MS 扫描一次按键。,读取值。。如果多个按键,又有多余的定时器,可以试试这个方法,效率高了。搞STM32 刚好。 cool.
recommend-type

51单片机H桥电路控制电机正反转和PWM调速

搭了个H桥电路,控制电机的正反转和PWM调速,程序是网上的,改改引脚就能用,本文详细描绘了电路图和源程序。
recommend-type

51单片机单中断多按键的应用.doc

在单片机的按键编程中,有时会遇到一个问题,用多个按键来控制多个死循环,而程序一旦进入循环就跳不出来,此时会想到用中断,而普通单片机一般只有2个外部中断,stc系列的查了一下最多也只有5个外部中断,那要是...
recommend-type

免费下载基于51单片机的直流电机调速系统+Proteus源码+部分代码实现.pdf

本此课程设计选择STC89C52单片机作为主控芯片,选取带有光电编码器的直流电机作为被控对象,利用单片机的T0定时器产生PWM信号并送到直流电机。...同时,采用PID控制算法可实现电机速度在特定的场合实现自动切换。
recommend-type

51单片机步进电机控制汇编语言程序

本程序是通过秒信号触发中断来实现的,要求中断程序必须在1S内执行完毕;步进电机转速控制是通过8255输入信号在每次执行中断程序内调整控制信号的循环次数来实现的。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。