代价树的宽度优先搜索解决八位码问题输出每一步过程 python代码有注释
时间: 2023-08-13 20:05:29 浏览: 126
宽度优先搜索解决八数码
以下是代价树的宽度优先搜索解决八位码问题并输出每一步过程的Python代码,带有注释说明:
```python
# 代价树的宽度优先搜索解决八位码问题并输出每一步过程
from queue import Queue
# 定义初始状态和目标状态
initial_state = [2, 8, 3, 1, 6, 4, 7, 0, 5]
goal_state = [1, 2, 3, 8, 0, 4, 7, 6, 5]
# 定义每个状态的代价
cost = {tuple(initial_state): 0}
# 定义转移操作
moves = {
0: [1, 3],
1: [0, 2, 4],
2: [1, 5],
3: [0, 4, 6],
4: [1, 3, 5, 7],
5: [2, 4, 8],
6: [3, 7],
7: [4, 6, 8],
8: [5, 7]
}
# 定义转移操作的文字描述
move_names = {
0: 'Up',
1: 'Right',
2: 'Down',
3: 'Left'
}
# 定义搜索函数
def bfs(initial_state, goal_state):
# 初始化队列和访问状态
q = Queue()
q.put(initial_state)
visited = set()
visited.add(tuple(initial_state))
# 开始搜索
while not q.empty():
# 取出队列中的下一个状态
current_state = q.get()
# 如果当前状态是目标状态,则输出路径并结束搜索
if current_state == goal_state:
path = []
while current_state != initial_state:
for move, next_state in moves.items():
if tuple(current_state) in next_state:
path.append(move_names[move])
current_state = next_state[move]
break
path.reverse()
print('Path:', path)
return
# 对当前状态进行转移操作
for move, next_state in moves.items():
new_state = current_state[:]
if move in next_state:
index = new_state.index(0)
if move == 0:
new_index = index - 3
elif move == 1:
new_index = index + 1
elif move == 2:
new_index = index + 3
else:
new_index = index - 1
new_state[index], new_state[new_index] = new_state[new_index], new_state[index]
# 如果新状态没有被访问过,则将其加入队列和访问状态,并计算代价
if tuple(new_state) not in visited:
q.put(new_state)
visited.add(tuple(new_state))
cost[tuple(new_state)] = cost[tuple(current_state)] + 1
# 调用搜索函数
bfs(initial_state, goal_state)
```
在代码中,我们使用了Python内置的`queue`模块中的`Queue`类来实现队列,使用了Python内置的`set`类型来实现访问状态。在搜索过程中,我们使用了一个字典`cost`来记录每个状态的代价值,使用了两个字典`moves`和`move_names`来定义转移操作和转移操作的文字描述。在搜索结束后,我们输出了路径,并使用了Python内置的`reverse()`方法来将路径反转,以便输出正确的顺序。
阅读全文