bits=randi([0,8],1,100)会产生什么

时间: 2024-04-10 21:26:39 浏览: 8
当你运行 `bits = randi([0,8],1,100)` 这行代码时,它会生成一个包含100个元素的随机整数数组 `bits`。这些整数的取值范围是0到8之间(包括0和8)。每个元素都是独立且均匀分布的随机整数。 例如,生成的 `bits` 数组可能如下所示: ``` [2, 5, 8, 1, 6, 0, 4, 3, 7, 2, 1, 8, 5, 3, 0, 1, 4, 6, 7, 8, ...] ``` 其中,每个元素的取值都在0到8之间。 希望这个解答对你有帮助!如果还有其他问题,请随时提问。
相关问题

用中文解释bits = randi([0,3],1,N); symbols = qammod(bits,4);

bits = randi([0,3],1,N) 表示生成一个长度为N的随机二进制序列,每个二进制数的取值范围在0到3之间。 symbols = qammod(bits,4) 表示将这个二进制序列转化成4-ary QAM调制的符号序列。QAM调制是一种常用的数字调制方式,4-ary QAM调制表示每个符号有4个取值,符号序列的长度为N/2。

以下是一个卷积码编码代码,请用matlab完成译码bits = randi([0 1], 173, 1); coded_bits = convenc(bits, poly2trellis(7,[171 133]));

以下是卷积码译码的matlab代码: ```matlab % 生成随机比特流 bits = randi([0 1], 173, 1); % 编码 trellis = poly2trellis(7,[171 133]); coded_bits = convenc(bits, trellis); % 译码 decoded_bits = vitdec(coded_bits, trellis, 5, 'trunc', 'hard'); ``` 其中,`vitdec` 函数用于卷积码译码,第一个参数为待译码的比特流,第二个参数为卷积码的生成矩阵,第三个参数为迭代次数,第四个参数表示是否截断译码(即如果译码结果长度超过输入比特流长度,是否截取前面的比特),最后一个参数指定硬判决(即将软判决结果转换为二进制比特流)或软判决(即保留软判决结果)。在上述代码中,我们选择硬判决。

相关推荐

clear all; %% 参数设置 M = 4; % 调制阶数 N = 1e5; % 仿真比特数 SNRdB = 0:1:14; % 信噪比范围 Es = 1; % 符号能量 Eb = Es / log2(M); % 比特能量 sigma = sqrt(Es ./ (2 * 10 .^ (SNRdB/10)));% 噪声标准差 %% 信源产生信息比特 bits = randi([0, 1], 1, N); %% 调制 symbols = zeros(1, N/2); for i = 1:N/2 if bits(2i-1)==0 && bits(2i)==0 symbols(i) = -3; elseif bits(2i-1)==0 && bits(2i)==1 symbols(i) = -1; elseif bits(2i-1)==1 && bits(2i)==0 symbols(i) = 1; elseif bits(2i-1)==1 && bits(2i)==1 symbols(i) = 3; end end %% 信道 noises = randn(1, N/2) .* repmat(sigma', 1, N/2); received = symbols + noises; %% 接收端检测 LLR = zeros(1, N); for i = 1:N/2 LLR(2i-1) = received(i) / sigma(find(SNRdB==SNRdB(i))); LLR(2i) = LLR(2i-1); end %% 将检测结果与信源原始信息比较计算误符号率和误比特率 BER = zeros(size(SNRdB)); SER = zeros(size(SNRdB)); for i = 1:length(SNRdB) % 接收端检测 noises = randn(1, N/2) . sigma(i); received = symbols + noises; LLR = zeros(1, N); for j = 1:N/2 LLR(2j-1) = received(j) / sigma(i); LLR(2j) = LLR(2j-1); end % 软判决译码 bits_hat = zeros(1, N); for j=1:N/2 if LLR(2j-1)>0 bits_hat(2j-1) = 1; end if LLR(2j)>0 bits_hat(2j) = 1; end end % 统计误码率 BER(i) = sum(bits~=bits_hat) / N; SER(i) = sum(symbols~=received) / (N/2); end %% 作图 semilogy(SNRdB, SER, 'k-o', 'linewidth', 2); hold on; semilogy(SNRdB, qfunc(sqrt(210.^(SNRdB/10))), 'r', 'linewidth', 2); grid on; xlabel('SNR(dB)'); ylabel('Symbol Error Rate'); legend('Simulation', 'Theory'); 出现错误索引超出数组元素的数目(15)。 出错 Untitled (第 36 行) LLR(2*i-1) = received(i) / sigma(find(SNRdB==SNRdB(i)));更改形成新的MATLAB程序

clear all; close all; clc;tic its_option =2; hoise_option=1; =4;NT=2; SNRdBs=[0:2:20];sq05=sqrt(0.5); obe_target =500; BER_target =1e-3; taw_bit_len= 2592-6; nterleaving_num = 72; deinterleaving_num = 72; _frame = 1e8; or i_SNR=1:length(SNRdBs) sig_power=NI;SNRdB=SNRdBs(i_SNR); sigma2=sig_power*10°(-SNRdB/10)*noise_option;sigmal=sqrt(sigma2/2); nobe = 0; Viterbi_init for i_frame=1:1:N_frame I switch (bits_option) case (0】, bits=zeros(1,raw_bit_len); case (11, bits=ones(1,raw_bit_len); casef2), bits=randint(1,raw_bit_len); case (2), bits=randi(1,1,raw_bit_len)-1; end encoding_bits= convolution_encoder(bits);interleaved=[]; for i=l:interleaving_mum interleaved=[interleavedencoding_bits([i:interleaving_mum:end])];for tx_time-l:648 tx_bits=interleaved(1:8); interleaved(1:8)=[]; QAM16_symbol=QAM16_mod(tx_bits, 2);x(1,1) =QAM16_symbol(1);x(2,h)=QAM16_symbol(2);if rem(tx_time-1,81)==0 H = sq05*(randn(2,2)+j*randn(2,2)); end y =H*x; noise = sqrt(sigma2/2)*(randn(2,1)+j*randn(2,1)); if noise_option==1, y = y + noise;endW=inv(H'*H+sigma2*diag (ones(1,2)))*H'; K_tilde =W*y; x_hat = QAM16_slicer(X_tilde, 2); temp_bit=[temp_bit QAM16_denapper(X_hat, 2)]; end deinterleaved=[]; for i=1:deinterleaving_rum deinterleaved=[deinterleaved temp_bit([i:deinterleaving_mum:end])];end received_bit=Viterbi_decode(deinterleaved) for EC_dummy=1:1:raw_bit_len, if nobe>=nobe_target, break; end end if (nobe>=nobe_target) break; end end BER(i_SNR)=nobe/((i_frame-1)*raw_bit_len+EC_dummy);fprintf(’t%dt\t%1.4f\n', SNRdB,BER(i_SNR)); if BER(i_SMR)<BER_target, break; end end利用上述代码构建一个新的代码,实现BER绘图,使其分别绘制两幅BER图,分别为有噪声和无噪声时,bits-option三种情况的BER

clear all; %% 参数设置 M = 4; % 调制阶数 N = 1e5; % 仿真比特数 SNRdB = 0:1:14; % 信噪比范围 Es = 1; % 符号能量 Eb = Es / log2(M); % 比特能量 sigma = sqrt(Es ./ (2 * 10 .^ (SNRdB/10))); % 噪声标准差 %% 信源产生信息比特 bits = randi([0, 1], 1, N); %% 调制 symbols = zeros(1, N/2); for i = 1:N/2 if bits(2i-1)==0 && bits(2i)==0 symbols(i) = -3; elseif bits(2i-1)==0 && bits(2i)==1 symbols(i) = -1; elseif bits(2i-1)==1 && bits(2i)==0 symbols(i) = 1; elseif bits(2i-1)==1 && bits(2i)==1 symbols(i) = 3; end end %% 信道 noises = randn(1, N/2) .* sigma; received = symbols + noises; %% 接收端检测 LLR = zeros(1, N); for i = 1:N/2 LLR(2i-1) = received(i) / sigma(find(SNRdB==SNRdB(i))); LLR(2i) = LLR(2i-1); end %% 将检测结果与信源原始信息比较计算误符号率和误比特率 BER = zeros(size(SNRdB)); SER = zeros(size(SNRdB)); for i = 1:length(SNRdB) % 接收端检测 noises = randn(1, N/2) . sigma(i); received = symbols + noises; LLR = zeros(1, N); for j = 1:N/2 LLR(2j-1) = received(j) / sigma(i); LLR(2j) = LLR(2j-1); end % 软判决译码 bits_hat = zeros(1, N); for j=1:N/2 if LLR(2j-1)>0 bits_hat(2j-1) = 1; end if LLR(2j)>0 bits_hat(2j) = 1; end end % 统计误码率 BER(i) = sum(bits~=bits_hat) / N; SER(i) = sum(symbols~=received) / (N/2); end %% 作图 semilogy(SNRdB, SER, 'k-o', 'linewidth', 2); hold on; semilogy(SNRdB, qfunc(sqrt(210.^(SNRdB/10))), 'r', 'linewidth', 2); grid on; xlabel('SNR(dB)'); ylabel('Symbol Error Rate'); legend('Simulation', 'Theory'); 这个程序出现了错误使用 .* 矩阵维度必须一致。 出错 Untitled (第 29 行) noises = randn(1, N/2) .* sigma; 错误,请更改形成新的MATLAB程序

% 4PAM调制信号在高斯信道下的性能仿真 clear; % 参数设置 M = 4; % 调制阶数 Eb = 1; % 符号能量 Es = Eb * log2(M); % 平均符号能量 N0 = 1; % 单边噪声功率谱密度 SNRdBs = 0:14; % 信噪比范围 SNRs = 10.^(SNRdBs/10); % 信噪比 numBits = 1e6; % 仿真比特数 numTrials = 100; % 重复试验次数 % 产生随机比特序列 bits = randi([0 1], 1, numBits); % 4PAM调制 symbols = pammod(bits, M); % 仿真误符号率和误比特率 simBERs = zeros(size(SNRs)); simSERs = zeros(size(SNRs)); for i = 1:length(SNRs) SNR = SNRs(i); sigma = sqrt(Es/(2*SNR)); % 噪声标准差 numErrors = 0; numBits = 0; for j = 1:numTrials % 加入高斯白噪声 received = symbols + sigma * randn(size(symbols)); % 4PAM解调 detected = pamdemod(received, M); % 统计误符号数和误比特数 numErrors = numErrors + sum(detected ~= bits); numBits = numBits + length(bits); end simBERs(i) = numErrors / numBits; simSERs(i) = simBERs(i) * log2(M); end % 理论误符号率和误比特率 theoryBERs = 2*(1-1/sqrt(M))*qfunc(sqrt((3*SNRs)/(2*sqrt(M-1)))); theorySERs = 2*(M-1)/M*theoryBERs; % 画图比较 figure; semilogy(SNRdBs, theoryBERs, '-.', 'LineWidth', 2); hold on; semilogy(SNRdBs, simBERs, 'o-', 'LineWidth', 2); grid on; xlabel('SNR (dB)'); ylabel('BER'); legend('Theory', 'Simulation'); title(sprintf('4PAM in AWGN Channel)', 10*log10(Eb/N0))); figure; semilogy(SNRdBs, theorySERs, '-.', 'LineWidth', 2); hold on; semilogy(SNRdBs, simSERs, 'o-', 'LineWidth', 2); grid on; xlabel('SNR (dB)'); ylabel('SER'); legend('Theory', 'Simulation'); title(sprintf('4PAM in AWGN Channel', 10*log10(Eb/N0)));求其在4PAM下的误码率和误符号率

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。