怎么用python版本的opencv扫描aruco
时间: 2023-11-19 19:05:36 浏览: 126
要使用Python版本的OpenCV扫描ArUco,需要先安装OpenCV和ArUco模块。可以使用以下命令安装:
```
pip install opencv-python
pip install opencv-contrib-python
pip install numpy
pip install pillow
```
然后,可以使用以下代码来检测ArUco标记:
```python
import cv2
import cv2.aruco as aruco
# Load the predefined dictionary
dictionary = aruco.getPredefinedDictionary(aruco.DICT_6X6_250)
# Initialize the detector parameters
parameters = aruco.DetectorParameters_create()
# Load the image
image = cv2.imread('path/to/image.jpg')
# Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect the markers in the image
corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, dictionary, parameters=parameters)
# Draw the detected markers on the image
image_with_markers = aruco.drawDetectedMarkers(image, corners, ids)
# Show the image with markers
cv2.imshow('Image with markers', image_with_markers)
cv2.waitKey(0)
```
这个代码片段将检测图像中的ArUco标记,并在图像上绘制检测到的标记。你可以将`path/to/image.jpg`替换为你要检测的图像的路径。
阅读全文
相关推荐
















