YOLOv5的预选框损失函数
时间: 2023-12-25 11:43:55 浏览: 131
YOLO物体检测系列(预选框/置信度/分类任/回归任务/损失函数/公式解析/置信度/非极大值抑制)
YOLOv5的预选框损失函数是基于预选框进行训练的,主要是为了提高检测框的召回率和准确率。
YOLOv5的预选框损失函数主要由以下四个部分组成:
1. Objectness Loss:用于衡量预选框中是否包含目标物体。对于包含目标物体的预选框,该损失函数会惩罚其Objectness Score(表示预选框中包含目标的概率)与1之间的差距;对于不包含目标物体的预选框,该损失函数会惩罚其Objectness Score与0之间的差距。
2. Center Loss:用于衡量预选框中目标物体的中心点的坐标预测是否准确。对于包含目标物体的预选框,该损失函数会惩罚其中心点坐标的预测值与实际值之间的差距。
3. Width-Height Loss:用于衡量预选框中目标物体的宽度和高度的预测是否准确。对于包含目标物体的预选框,该损失函数会惩罚其宽度和高度的预测值与实际值之间的差距。
4. Class Loss:用于衡量预选框中目标物体的类别预测是否准确。对于包含目标物体的预选框,该损失函数会惩罚其类别预测值与实际值之间的差距。
以上四个部分的损失函数会分别计算,然后加权求和得到最终的损失值。通过对预选框损失函数的训练,可以让YOLOv5模型更加准确地预测出目标物体的位置和类别。
阅读全文