local_features = self.fuser(left_eye_fake_features, right_eye_fake_features, nose_fake_features, mouth_fake_features)
时间: 2023-11-16 15:05:55 浏览: 72
This line of code is likely part of a deep learning model for facial recognition or analysis. The "self.fuser" function is being used to combine the features extracted from different parts of the face (left eye, right eye, nose, and mouth) into a single set of features that can be used for further analysis or classification. The "left_eye_fake_features," "right_eye_fake_features," "nose_fake_features," and "mouth_fake_features" are likely the output of separate convolutional neural network (CNN) layers that extract features from each of these face parts. The "local_features" variable likely contains the combined features that will be passed to another layer in the model.
相关问题
import json import pandas as pd import requests data1 = pd.read_excel('C:\\Users\\Administrator\\PycharmProjects\\pythonProject10\\用户信息.xls') head = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:92.0) Gecko/20100101 Firefox/92.0', 'cookie': 'UM_distinctid=17fed3bf7296d4-01aeae5d80942c-1f343371-1fa400-17fed3bf72a1163; __client_id=2ec00f15870204623a78bf6f63f7c99a85774791; CNZZDATA5476811=cnzz_eid%3D1690978113-1633007100-https%253A\%252F\%252Fcn.bing.com\%252F%26ntime%3D1651749421; _uid=0; login_referer=https%3A\%2F\%2Fwww.luogu.com.cn\%2Fuser\%2F387021' } data = requests.get("https://www.luogu.com.cn/fe/api/contest/scoreboard/68651?page=1", headers=head) data.encoding = 'utf-8' json_object = json.loads(data.text) g = dict() rank = dict() ID = {'U197159': 'A', 'U196210': 'B', 'U215461': 'C', 'U197241': 'D', 'U197281': 'E', 'U215474': 'F', 'U197124': 'G', 'U215470': 'H'} idx = 1 for i in json_object['scoreboard']['result']: g[i['user']['name']] = [] rank[i['user']['name']] = idx idx = idx + 1 for j in i['details']: if i['details'][j]['score'] >= 0: g[i['user']['name']].append(ID[j]) for i in range(33): if data1.loc[i, '洛谷账号'] in rank.keys(): data1.loc[i, '排名'] = rank[data1.loc[i, '洛谷账号']] for j in g[data1.loc[i, '洛谷账号']]: data1.loc[i, j] = 'AC' else: data1.loc[i, '排名'] = -1 data1.to_excel('C:\\Users\\Administrator\\PycharmProjects\\pythonProject10\\result.xls', index=False)
这段代码是用来爬取洛谷比赛成绩并将其和本地 Excel 文件中的用户信息进行匹配,最后将结果输出到本地 Excel 文件。但是在代码中出现了一个错误,导致代码无法正常运行。
错误可能是由于代码中引用的文件路径不正确或者 Excel 文件格式不受 Pandas 支持所致。您可以检查一下文件路径是否正确,并尝试使用 Pandas 支持的其他文件格式(如 CSV)来解决这个问题。另外,您也可以查看代码中是否存在其他语法错误或逻辑错误。
修改代码from pandas import user=read_csv(APP】 cSV encoding='gbk') userL =user 概率].fi11na(0.0) user Fuser fi11na(0.0) user 愿分 享概 user <0]=0 user 享概率 user 1 user 愿喜久 率 user 0」 user 唇分享 率 user 享概率 >1 =1 user user 克击 =’T]=1 user[是否点击分享 LuserL 是古点击分享 ’F1=0 user.to_csv(user_clean.csv index=False) user_clean=read_csv(user_clean.csv' coding a:0,b:1,'c:2, d:3, e:4, r12 5 k:10,1:11, D6E8了8 2t:19,'u:20,'v:21, x:23, :24, 三是5,王三工·三工 def tocode(s): code =0 ss.lower()[o] if s in coding.keys(): code coding[s] return code user_clean['用户编码']=user_clean["用户名"门N apply(lambda x:tocode (x)) user_clean["分组后在线时长=qcut(user-cleanl在线时长"],\ 4,1abe1s=[4,3,2,1]) user_clean.to_csv('user_feature.csv',index=False) from numpy import from sklearn.cluster import KMeans from sklearn.metrics import fowlkes_mallows_score user_feature read_csv(user_feature.csv X=user_feature[不愿分享概率,'愿意分享概率',在线时长',\ 分后在线时长方 在线时长卢, y=user_feature['是香点击分享 y=list(y) model KMeans(n_clusters=2).fit(X) model.labels_=list (model.labels_) score=fowlkes_mallows_score(y,model.labels_) print('FMI评价分值为:%f%score).
抱歉,这段代码有很多错误,需要进行修改。以下是修改后的代码:
```
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import fowlkes_mallows_score
# 读取原始数据
user = pd.read_csv("APP.csv", encoding='gbk')
# 处理缺失值
user.fillna(0.0, inplace=True)
# 处理用户分享概率小于0的情况
user.loc[user["不愿分享概率"] < 0, "不愿分享概率"] = 0
# 处理用户分享概率大于1的情况
user.loc[user["不愿分享概率"] > 1, "不愿分享概率"] = 1
# 处理用户是否点击分享
user["是否点击分享"] = user["是香点击分享"].apply(lambda x: 1 if x == 'T' else 0)
# 用户编码
coding = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'r': 12, 'k': 10, 'l': 11, 't': 19, 'u': 20, 'v': 21, 'x': 23, 'y': 24}
def tocode(s):
code = 0
for c in s.lower():
if c in coding.keys():
code = code * 26 + coding[c]
return code
user["用户编码"] = user["用户名"].apply(lambda x: tocode(x))
# 分组后在线时长
user["分组后在线时长"] = pd.qcut(user["在线时长"], 4, labels=[4, 3, 2, 1])
# 保存处理后的数据
user_clean = user[["用户编码", "不愿分享概率", "愿意分享概率", "在线时长", "分组后在线时长", "是否点击分享"]]
user_clean.to_csv("user_clean.csv", index=False)
# 特征工程
user_feature = pd.read_csv("user_clean.csv")
# K-Means聚类
X = user_feature[["不愿分享概率", "愿意分享概率", "在线时长", "分组后在线时长"]]
y = user_feature["是否点击分享"]
model = KMeans(n_clusters=2).fit(X)
model.labels_ = list(model.labels_)
score = fowlkes_mallows_score(y, model.labels_)
print('FMI评价分值为:%f' % score)
```
这段代码的功能是对用户数据进行一系列处理和特征工程,最后使用KMeans算法进行聚类并输出FMI评价分值。
阅读全文