简述监督学习和无监督学习算法
时间: 2023-11-10 15:31:31 浏览: 186
高效利用无标注数据:自监督学习简述.rar
监督学习和无监督学习是机器学习中的两种主要算法。
监督学习是指通过给算法提供带有标签的数据,让算法学习如何预测新数据的标签。在监督学习中,算法的目标是学习一个函数,将输入映射到输出。常见的监督学习算法有线性回归、逻辑回归、决策树、随机森林、神经网络等。
无监督学习是指使用未标记的数据来训练算法,让算法自行发现数据中的结构和模式。在无监督学习中,算法的目标是学习数据的分布,发现数据中的模式和关系。常见的无监督学习算法有聚类、主成分分析(PCA)、自编码器、生成对抗网络(GAN)等。
总的来说,监督学习适用于有明确的目标和标签的任务,如分类、回归等;而无监督学习则适用于无明确目标和标签的任务,如聚类、降维等。
阅读全文