改进的粒子群算法优化bp神经网络预测番茄产量python代码案例,输入8个参数,输出产量
时间: 2024-02-24 21:59:11 浏览: 217
好的,让我来帮你回答这个问题。
首先,粒子群算法是一种优化算法,它可以用来优化神经网络的参数,以达到更好的预测效果。BP神经网络是一种常用的神经网络模型,它可以用来进行回归或分类任务。在这个问题中,我们需要使用粒子群算法来优化BP神经网络的参数,以预测番茄的产量。
以下是一个使用Python实现的粒子群算法优化BP神经网络的代码案例:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义BP神经网络模型
class BPNeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.W1 = np.random.randn(self.input_size, self.hidden_size)
self.b1 = np.zeros((1, self.hidden_size))
self.W2 = np.random.randn(self.hidden_size, self.output_size)
self.b2 = np.zeros((1, self.output_size))
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def forward(self, X):
self.z1 = np.dot(X, self.W1) + self.b1
self.a1 = self.sigmoid(self.z1)
self.z2 = np.dot(self.a1, self.W2) + self.b2
self.y = self.z2
def calculate_loss(self, X, y):
self.forward(X)
loss = np.mean((self.y - y) ** 2)
return loss
def predict(self, X):
self.forward(X)
return self.y
def get_params(self):
params = np.concatenate([self.W1.reshape(-1), self.b1.reshape(-1), self.W2.reshape(-1), self.b2.reshape(-1)])
return params
def set_params(self, params):
W1_start = 0
W1_end = self.input_size * self.hidden_size
self.W1 = np.reshape(params[W1_start:W1_end], (self.input_size, self.hidden_size))
b1_end = W1_end + self.hidden_size
self.b1 = np.reshape(params[W1_end:b1_end], (1, self.hidden_size))
W2_end = b1_end + self.hidden_size * self.output_size
self.W2 = np.reshape(params[b1_end:W2_end], (self.hidden_size, self.output_size))
self.b2 = np.reshape(params[W2_end:], (1, self.output_size))
def get_grads(self, X, y):
# forward
self.forward(X)
# backward
delta3 = self.y - y
dW2 = np.dot(self.a1.T, delta3)
db2 = np.sum(delta3, axis=0, keepdims=True)
delta2 = np.dot(delta3, self.W2.T) * self.a1 * (1 - self.a1)
dW1 = np.dot(X.T, delta2)
db1 = np.sum(delta2, axis=0)
grads = np.concatenate([dW1.reshape(-1), db1.reshape(-1), dW2.reshape(-1), db2.reshape(-1)])
return grads
# 定义粒子群算法模型
class PSO:
def __init__(self, n_particles, input_size, hidden_size, output_size, X, y, epochs, lr, w, c1, c2):
self.n_particles = n_particles
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.X = X
self.y = y
self.epochs = epochs
self.lr = lr
self.w = w
self.c1 = c1
self.c2 = c2
self.particles = []
self.gbest_params = None
self.gbest_loss = np.inf
self.initialize_particles()
def initialize_particles(self):
for i in range(self.n_particles):
nn = BPNeuralNetwork(self.input_size, self.hidden_size, self.output_size)
params = nn.get_params()
velocity = np.zeros_like(params)
particle = {'params': params, 'velocity': velocity, 'pbest_params': params, 'pbest_loss': np.inf}
self.particles.append(particle)
def update_particles(self):
for i in range(self.n_particles):
particle = self.particles[i]
# 更新速度和参数
r1 = np.random.rand(len(particle['velocity']))
r2 = np.random.rand(len(particle['velocity']))
particle['velocity'] = self.w * particle['velocity'] + self.c1 * r1 * (particle['pbest_params'] - particle['params']) + self.c2 * r2 * (self.gbest_params - particle['params'])
particle['params'] = particle['params'] + self.lr * particle['velocity']
# 计算粒子的损失函数值和最优值
nn = BPNeuralNetwork(self.input_size, self.hidden_size, self.output_size)
nn.set_params(particle['params'])
loss = nn.calculate_loss(self.X, self.y)
if loss < particle['pbest_loss']:
particle['pbest_params'] = particle['params']
particle['pbest_loss'] = loss
# 更新全局最优值
if loss < self.gbest_loss:
self.gbest_params = particle['params']
self.gbest_loss = loss
def train(self):
for i in range(self.epochs):
self.update_particles()
def predict(self, X):
nn = BPNeuralNetwork(self.input_size, self.hidden_size, self.output_size)
nn.set_params(self.gbest_params)
y_pred = nn.predict(X)
return y_pred
# 测试代码
X = np.random.randn(100, 8)
y = np.random.randn(100, 1)
pso = PSO(n_particles=10, input_size=8, hidden_size=16, output_size=1, X=X, y=y, epochs=100, lr=0.1, w=0.7, c1=1.2, c2=1.2)
pso.train()
y_pred = pso.predict(X)
print('预测结果:', y_pred)
```
在这个代码案例中,我们首先定义了一个BP神经网络模型,然后定义了一个粒子群算法模型。在粒子群算法模型中,我们使用了BP神经网络来计算粒子的损失函数值,并更新全局最优值。最后,我们使用训练好的模型来进行预测。
请注意,这个代码案例只是一个简单的示例,实际应用中需要根据具体情况进行修改和调整。
阅读全文