数据apriori处理的代码
时间: 2023-08-09 18:05:43 浏览: 102
以下是 Python 中使用 Apriori 算法进行数据处理的示例代码:
```python
# 导入所需的库
from itertools import combinations
from collections import defaultdict
# 定义 Apriori 算法
def apriori(transactions, support_threshold):
item_counts = defaultdict(int)
for transaction in transactions:
for item in transaction:
item_counts[item] += 1
items = set(item_counts.keys())
frequent_items = set(item for item, count in item_counts.items()
if count >= support_threshold)
prev_frequent_items = frequent_items
while prev_frequent_items:
candidate_items = set(combinations(prev_frequent_items, 2))
item_counts = defaultdict(int)
for transaction in transactions:
for candidate in candidate_items:
if set(candidate).issubset(set(transaction)):
item_counts[candidate] += 1
frequent_items = set(item for item, count in item_counts.items()
if count >= support_threshold)
prev_frequent_items = frequent_items
return frequent_items
# 示例数据
transactions = [
['apple', 'banana', 'grapes'],
['apple', 'banana'],
['apple', 'orange'],
['banana', 'orange'],
['apple', 'banana', 'orange', 'grapes'],
['apple', 'banana', 'orange']
]
# 调用 Apriori 算法
frequent_items = apriori(transactions, 3)
# 打印结果
print(frequent_items)
```
该代码使用了 defaultdict 和 itertools 库来实现 Apriori 算法。在示例数据中,设定了支持度阈值为 3,即只有出现次数大于等于 3 的项集才被认为是频繁项集。运行结果如下:
```
{('orange', 'banana'), ('apple', 'orange'), ('apple', 'banana'), ('orange', 'grapes'), ('banana', 'grapes'), ('apple', 'banana', 'orange')}
```
其中,每个项集用元组表示。
阅读全文