基于Python深度学习框架Pytorch的图像分割代码示例
时间: 2023-09-05 12:13:04 浏览: 118
以下是一个基于Pytorch的图像分割代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import Cityscapes
from model import UNet
# 设置超参数
num_epochs = 10
batch_size = 4
learning_rate = 0.001
# 加载Cityscapes数据集
train_dataset = Cityscapes(root='./data', split='train', mode='fine',
target_type=['semantic'], transform=transforms.ToTensor())
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 定义UNet模型和损失函数
model = UNet(n_channels=3, n_classes=19)
criterion = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 每100个iteration打印一次损失
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Iteration [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 保存模型
torch.save(model.state_dict(), 'unet.ckpt')
```
这里使用了一个名为`UNet`的卷积神经网络模型进行图像分割,该模型的实现可以参考这个[代码库](https://github.com/milesial/Pytorch-UNet)。在训练过程中,我们使用了`Cityscapes`数据集,它是一个用于城市场景图像分割的数据集。在每个iteration结束后,我们打印了损失值以便于观察训练过程。最后,我们将训练好的模型保存到了`unet.ckpt`文件中。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)