用resnet18分析jaffe数据
时间: 2023-06-10 19:02:50 浏览: 136
可以使用预训练的ResNet-18模型对Jaffe数据进行分析,其中ResNet-18是一种深度卷积神经网络,特别适合进行图像分类等任务。在使用时,可以将Jaffe数据集中的图片输入到ResNet-18模型中,通过模型输出的分类结果进行分析和判断。可以通过训练新的模型来对该任务进行进一步的优化和改进。
相关问题
写一个用resnet18分析jaffe数据的代码
好的,下面是使用 PyTorch 写的基于 ResNet18 分析 JAFFE 数据集的代码:
```
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, models
from PIL import Image
import numpy as np
import pandas as pd
class JAFFEDataset(Dataset):
def __init__(self, csv_file, root_dir, transform=None):
self.annotations = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
img_path = self.root_dir + '/' + self.annotations.iloc[idx, 0]
image = Image.open(img_path)
emotion = self.annotations.iloc[idx, 1]
labels_dict = {'NE':0, 'AN':1, 'DI':2, 'FE':3, 'HA':4, 'SA':5, 'SU':6}
label = labels_dict[emotion]
if self.transform:
image = self.transform(image)
return image, label
transform_train = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_set = JAFFEDataset('jaffe_train.csv', 'jaffe', transform_train)
test_set = JAFFEDataset('jaffe_test.csv', 'jaffe', transform_test)
train_loader = DataLoader(train_set, batch_size=32, shuffle=True)
test_loader = DataLoader(test_set, batch_size=32, shuffle=False)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = models.resnet18(pretrained=True)
model.fc = nn.Linear(512, 7)
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
num_epochs = 10
for epoch in range(num_epochs):
for images, labels in train_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
```
以上是基于 ResNet18 分析 JAFFE 数据集的代码,该代码可用于训练并测试一个情绪识别模型。您可以将代码保存为 `.py` 文件并在命令行中运行。注意,您需要确保已经下载了 JAFFE 数据集,并相应修改代码中的文件名和路径。
写一个用resnet18分析jaffe数据集的代码,给出损失图,准确率图和混淆矩阵
好的,我会尽力回答你的问题,以下是代码示例:
```
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import confusion_matrix
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 数据预处理
transform = transforms.Compose([transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])
train_dataset = torchvision.datasets.ImageFolder(root='jaffe/train', transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=5, shuffle=True, num_workers=2)
test_dataset = torchvision.datasets.ImageFolder(root='jaffe/test', transform=transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=5, shuffle=False, num_workers=2)
classes = train_dataset.classes
# 定义模型
class ResNet18(nn.Module):
def __init__(self, num_classes=7):
super(ResNet18, self).__init__()
self.resnet18 = torchvision.models.resnet18(pretrained=True)
self.linear = nn.Linear(1000, num_classes)
def forward(self, x):
x = self.resnet18(x)
x = self.linear(x)
return x
model = ResNet18()
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i,data in enumerate(train_loader,0):
inputs,labels = data
inputs,labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9:
print('[%d,%5d] loss: %.3f' % (epoch+1,i+1,running_loss/10))
running_loss = 0.0
print('Finished Training')
# 测试模型
correct = 0
total = 0
predictions = []
true_labels = []
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
predictions += predicted.tolist()
true_labels += labels.tolist()
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
# 混淆矩阵
confusion_mat = confusion_matrix(true_labels, predictions)
print(confusion_mat)
# 准确率图
plt.plot([0,1,2,3,4,5,6], confusion_mat.diagonal()/confusion_mat.sum(1))
plt.xlabel('Classes')
plt.ylabel('Accuracy')
plt.show()
# 损失图
plt.plot(loss_list)
plt.xlabel('Iteration')
plt.ylabel('Loss')
plt.show()
```
请注意,上述示例仅作参考,需要根据具体情况进行修改。同时,混淆矩阵、准确率图和损失图的绘制需要额外的代码实现,不在此处展示。
阅读全文