pytorch框架孤立森林算法对齿轮箱故障诊断代码
时间: 2023-11-16 11:04:10 浏览: 139
基于Pytorch框架的CNN-LSTM模型在CWRU轴承故障诊断的应用
5星 · 资源好评率100%
以下是使用PyTorch框架实现孤立森林算法进行齿轮箱故障诊断的示例代码:
首先,导入必要的库:
```python
import torch
import numpy as np
from sklearn.ensemble import IsolationForest
from sklearn.metrics import roc_auc_score
```
接下来,定义一个函数,用于从数据集中读取数据:
```python
def load_dataset(file_path):
data = np.loadtxt(file_path, delimiter=",")
X = data[:, :-1]
y = data[:, -1]
return X, y
```
然后,定义一个函数,用于构建并训练孤立森林模型:
```python
def train_model(X_train):
model = IsolationForest(n_estimators=100, max_samples='auto', contamination=float(0.1), max_features=1.0)
model.fit(X_train)
return model
```
接着,定义一个函数,用于评估模型性能:
```python
def evaluate_model(model, X_test, y_test):
y_scores = model.decision_function(X_test)
auc_score = roc_auc_score(y_test, y_scores)
return auc_score
```
最后,将所有的函数组合起来进行训练和测试:
```python
# Load data
X_train, y_train = load_dataset("train_data.csv")
X_test, y_test = load_dataset("test_data.csv")
# Train model
model = train_model(X_train)
# Evaluate model
auc_score = evaluate_model(model, X_test, y_test)
print("AUC: ", auc_score)
```
以上代码可以根据实际需求进行修改和优化,以达到更好的性能和准确率。
阅读全文