写出0-1背包问题的回溯算法与分支限界法的问题分析、建模、算法描述、C++算法和算法分析

时间: 2023-12-23 19:05:52 浏览: 91
问题分析: 0-1背包问题是一个经典的组合优化问题,要求在一个给定的背包容量下,选择若干个物品放入背包中,使得物品的总价值最大,并且每个物品只能选择放入或不放入背包中。 建模: 我们可以将物品表示为一个二元组(w, v),其中w表示物品的重量,v表示物品的价值。我们需要考虑以下几个问题: 1.如何选择物品放入背包中,使得价值最大? 2.如何在选择物品的过程中,保证不超过背包的容量? 3.如何回溯到上一个状态,寻找下一个可行解? 算法描述: 回溯算法: 1.初始化背包容量为0,从第一个物品开始遍历,每个物品有两种选择:放入或不放入背包中。 2.如果放入该物品后不超过背包容量,则将该物品的价值加入总价值中,并继续遍历下一个物品。 3.如果不放该物品,则直接跳过该物品,继续遍历下一个物品。 4.当遍历完所有物品后,保存当前的总价值,并回溯到上一个状态,寻找下一个可行解。 5.重复以上步骤,直到找到所有的可行解。 分支限界法: 1.将物品按照单位重量价值从大到小排序,并按照排序后的顺序遍历。 2.对于每个物品,有两种选择:放入或不放入背包中。分别计算放入和不放入的上界,选择上界更高的分支进行扩展。 3.如果上界小于当前最优解,则剪枝。 4.重复以上步骤,直到找到最优解或者所有分支都被剪枝。 C++算法实现: 回溯算法: ```cpp void backtrack(vector<int>& weights, vector<int>& values, int capacity, int cur_weight, int cur_value, int start, int& max_value) { if (cur_weight > capacity) return; // 如果超过背包容量,返回 if (start == weights.size()) { // 遍历完所有物品 max_value = max(max_value, cur_value); // 更新最大价值 return; } backtrack(weights, values, capacity, cur_weight + weights[start], cur_value + values[start], start + 1, max_value); // 放入该物品 backtrack(weights, values, capacity, cur_weight, cur_value, start + 1, max_value); // 不放该物品 } int knapsack(vector<int>& weights, vector<int>& values, int capacity) { int max_value = 0; backtrack(weights, values, capacity, 0, 0, 0, max_value); return max_value; } ``` 分支限界法: ```cpp struct Node { int level; // 当前扩展到的层数 int value; // 当前价值 int weight; // 当前重量 double bound; // 当前上界 }; struct cmp { bool operator() (const Node& a, const Node& b) { return a.bound < b.bound; } }; double knapsack(vector<int>& weights, vector<int>& values, int capacity) { int n = weights.size(); vector<int> indices(n); for (int i = 0; i < n; ++i) { indices[i] = i; } sort(indices.begin(), indices.end(), [&](int a, int b) { return (double)values[a] / weights[a] > (double)values[b] / weights[b]; }); // 按照单位重量价值从大到小排序 priority_queue<Node, vector<Node>, cmp> q; q.push({-1, 0, 0, 0}); // 将根节点入队 double max_value = 0; while (!q.empty()) { auto u = q.top(); q.pop(); if (u.bound < max_value) continue; // 如果上界小于当前最优解,则剪枝 if (u.level == n - 1) { // 扩展到叶子节点 max_value = max(max_value, (double)u.value); continue; } int i = indices[u.level + 1]; if (u.weight + weights[i] <= capacity) { // 放入该物品 q.push({u.level + 1, u.value + values[i], u.weight + weights[i], u.bound}); } double bound = u.value + (double)(capacity - u.weight) * values[i] / weights[i]; // 计算不放该物品的上界 if (bound > max_value) { // 如果上界大于当前最优解,则继续扩展 q.push({u.level + 1, u.value, u.weight, bound}); } } return max_value; } ``` 算法分析: 回溯算法的时间复杂度是指数级别的,空间复杂度是O(n),其中n是物品个数。 分支限界法的时间复杂度是O(2^nlogn),空间复杂度是O(n),其中n是物品个数。虽然分支限界法的时间复杂度比回溯算法要低,但是在实际应用中,由于需要排序,因此常数较大,所以实际运行时间并不一定比回溯算法快。
阅读全文

相关推荐

大家在看

recommend-type

先栅极还是后栅极 业界争论高K技术

随着晶体管尺寸的不断缩小,HKMG(high-k绝缘层+金属栅极)技术几乎已经成为45nm以下级别制程的必备技术.不过在制作HKMG结构晶体管的 工艺方面,业内却存在两大各自固执己见的不同阵营,分别是以IBM为代表的Gate-first(先栅极)工艺流派和以Intel为代表的Gate-last(后栅极)工艺流派,尽管两大阵营均自称只有自己的工艺才是最适合制作HKMG晶体管的技术,但一般来说使用Gate-first工艺实现HKMG结构的难点在于如何控制 PMOS管的Vt电压(门限电压);而Gate-last工艺的难点则在于工艺较复杂,芯片的管芯密度同等条件下要比Gate-first工艺低,需要设 计方积极配合修改电路设计才可以达到与Gate-first工艺相同的管芯密度级别。
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。
recommend-type

LQR与PD控制在柔性机械臂中的对比研究

LQR与PD控制在柔性机械臂中的对比研究,路恩,杨雪锋,针对单杆柔性机械臂末端位置控制的问题,本文对柔性机械臂振动主动控制中较为常见的LQR和PD方法进行了控制效果的对比研究。首先,�
recommend-type

丹麦电力电价预测 预测未来24小时的电价 pytorch + lstm + 历史特征和价格 + 时间序列

pytorch + lstm + 历史特征和价格 + 时间序列
recommend-type

测量变频损耗L的方框图如图-所示。-微波电路实验讲义

测量变频损耗L的方框图如图1-1所示。 图1-1 实验线路 实验线路连接 本振源 信号源 功率计 定向耦合器 超高频毫伏表 滤波器 50Ω 混频器 毫安表

最新推荐

recommend-type

动态规划法、贪心算法、回溯法、分支限界法解决0-1背包

0-1背包问题是一个经典的组合优化...回溯法和分支限界法则适用于更广泛的搜索问题,但在0-1背包问题中,它们通常不如动态规划法效率高。在实际应用中,选择哪种算法取决于问题的具体特性以及对时间和空间复杂度的要求。
recommend-type

动态规划法求解0-1背包问题实验报告.pdf

总结来说,动态规划法求解0-1背包问题的关键在于构建正确的状态转移方程,并通过填表的方式逐步计算出所有子问题的最大价值。这种思想不仅可以应用于背包问题,还可以广泛应用于其他优化问题,如最长公共子序列、...
recommend-type

0-1背包回溯法java实现

零一背包问题的解决方案有多种,如动态规划、回溯法、分支限界法等。每种方法都有其优缺,选择哪种方法取决于实际问题的特点和需要。 在实际应用中,零一背包问题的解决方案可以用来解决各种问题,如仓库管理、资源...
recommend-type

算法分析广义背包实验报告doc

实验报告“算法分析广义背包”探讨了如何利用动态规划解决一种扩展的背包问题,即广义背包问题。在这个问题中,目标是在不超过背包载重量的前提下,选择物品以最大化总价值,而每种物品可以被放入背包多次或不放入。...
recommend-type

0-1背包问题的贪心、动态规划、回溯算法

该问题有多种解决方法,本文将对贪心算法、动态规划算法和回溯算法进行详细的介绍和分析。 一、贪心算法 贪心算法是一种常用于解决"0-1"背包问题的方法,该算法的基本思想是每次选择当前情况下最优的物品,使得总...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"