利用C语言编写软件实现上述功能。具体要求为: 从键盘任意输入一个由英文字母带空格构成的文本字符串,例如“i like learning datastructure course”,首先根据该字符串创建Huffman树,之后进行Huffman编码,然后把该字符串的Huffman编码结果向屏幕输出。能够利用前述的Huffman编码结果对某0-1码流进行解码得到字符串,并做详细注释
时间: 2024-03-04 10:49:04 浏览: 61
好的,我会按照您的要求回答问题。不过,我是一名语言模型AI,无法提供编程环境和编译运行代码的功能。但是我可以给您提供思路和伪代码,供您参考实现。
思路:
1. 输入一个由英文字母带空格构成的文本字符串。
2. 统计每个字符出现的频率,构建Huffman树。
3. 对原文本进行Huffman编码,输出编码结果。
伪代码:
```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#define MAX_CHARACTERS 256
#define MAX_TREE_NODES 511
#define MAX_BIT_LENGTH 100
typedef struct Node {
int freq;
char c;
struct Node *left;
struct Node *right;
} Node;
typedef struct MinHeap {
int size;
Node **nodes;
} MinHeap;
typedef struct HuffmanCode {
char c;
char code[MAX_BIT_LENGTH];
} HuffmanCode;
Node *create_node(char c, int freq, Node *left, Node *right) {
Node *node = (Node *) malloc(sizeof(Node));
node->c = c;
node->freq = freq;
node->left = left;
node->right = right;
return node;
}
MinHeap *create_heap(int capacity) {
MinHeap *heap = (MinHeap *) malloc(sizeof(MinHeap));
heap->size = 0;
heap->nodes = (Node **) malloc(capacity * sizeof(Node *));
return heap;
}
void swap_nodes(Node **a, Node **b) {
Node *temp = *a;
*a = *b;
*b = temp;
}
void heapify(MinHeap *heap, int idx) {
int smallest = idx;
int left = 2 * idx + 1;
int right = 2 * idx + 2;
if (left < heap->size && heap->nodes[left]->freq < heap->nodes[smallest]->freq) {
smallest = left;
}
if (right < heap->size && heap->nodes[right]->freq < heap->nodes[smallest]->freq) {
smallest = right;
}
if (smallest != idx) {
swap_nodes(&heap->nodes[idx], &heap->nodes[smallest]);
heapify(heap, smallest);
}
}
Node *extract_min(MinHeap *heap) {
Node *node = heap->nodes[0];
heap->nodes[0] = heap->nodes[heap->size - 1];
heap->size--;
heapify(heap, 0);
return node;
}
void insert_node(MinHeap *heap, Node *node) {
heap->size++;
int i = heap->size - 1;
while (i && node->freq < heap->nodes[(i - 1) / 2]->freq) {
heap->nodes[i] = heap->nodes[(i - 1) / 2];
i = (i - 1) / 2;
}
heap->nodes[i] = node;
}
void build_heap(MinHeap *heap) {
int n = heap->size;
for (int i = (n - 2) / 2; i >= 0; i--) {
heapify(heap, i);
}
}
Node *build_huffman_tree(char *text) {
int freq[MAX_CHARACTERS] = {0};
int n = strlen(text);
for (int i = 0; i < n; i++) {
freq[(int) text[i]]++;
}
MinHeap *heap = create_heap(MAX_TREE_NODES);
for (int i = 0; i < MAX_CHARACTERS; i++) {
if (freq[i] > 0) {
insert_node(heap, create_node((char) i, freq[i], NULL, NULL));
}
}
build_heap(heap);
while (heap->size > 1) {
Node *left = extract_min(heap);
Node *right = extract_min(heap);
Node *parent = create_node('$', left->freq + right->freq, left, right);
insert_node(heap, parent);
}
return extract_min(heap);
}
void generate_codes(Node *root, char *prefix, int idx, HuffmanCode *codes) {
if (root) {
if (root->c != '$') {
codes[root->c].c = root->c;
codes[root->c].code[idx] = '\0';
strcpy(codes[root->c].code, prefix);
}
prefix[idx] = '0';
generate_codes(root->left, prefix, idx + 1, codes);
prefix[idx] = '1';
generate_codes(root->right, prefix, idx + 1, codes);
}
}
void encode_text(char *text, HuffmanCode *codes, char *encoded) {
int n = strlen(text);
int idx = 0;
for (int i = 0; i < n; i++) {
if (isalpha(text[i]) || text[i] == ' ') {
strcat(encoded, codes[(int) text[i]].code);
}
}
}
void decode_text(Node *root, char *encoded) {
Node *node = root;
int n = strlen(encoded);
for (int i = 0; i < n; i++) {
if (encoded[i] == '0') {
node = node->left;
} else {
node = node->right;
}
if (node->left == NULL && node->right == NULL) {
printf("%c", node->c);
node = root;
}
}
}
int main() {
char text[MAX_TREE_NODES];
printf("Enter the text to be encoded: ");
fgets(text, MAX_TREE_NODES, stdin);
Node *root = build_huffman_tree(text);
char prefix[MAX_BIT_LENGTH];
HuffmanCode codes[MAX_CHARACTERS];
generate_codes(root, prefix, 0, codes);
char encoded[MAX_TREE_NODES] = "";
encode_text(text, codes, encoded);
printf("Encoded text: %s\n", encoded);
printf("Decoded text: ");
decode_text(root, encoded);
printf("\n");
return 0;
}
```
说明:
1. 使用结构体 `Node` 来表示Huffman树中的节点。
2. 使用结构体 `MinHeap` 来表示Huffman树中的最小堆。
3. `build_huffman_tree` 函数用于构建Huffman树。
4. `generate_codes` 函数用于生成Huffman编码。
5. `encode_text` 函数用于编码文本。
6. `decode_text` 函数用于解码文本。
7. `main` 函数用于输入文本、构建Huffman树、生成编码、编码文本、解码文本并输出结果。
阅读全文